首页> 中文学位 >Endoplasmic Reticulum Stress as a Cancer Therapeutic Strategy Using Multiple Myeloma as a Model
【6h】

Endoplasmic Reticulum Stress as a Cancer Therapeutic Strategy Using Multiple Myeloma as a Model

代理获取

目录

声明

摘要

Abstract

Contents

List Of Abbreviations

Chapter 1 Introduction

1.1 Multiple Myeloma

1.1.1 About Multiple Myeloma

1.1.2 Pathophysiology of MM

1.2 B cell development and plasma cell differentiation

1.3 ER stress,UPR and apoptosis

1.3.1 ER and ER stress

1.3.2 The unfolded protein response(UPR)

1.3.3 Molecular Chaperones

1.3.4 UPR and apoptosis

1.3.5 UPR and Angiogenesis

1.4 IRE1:General overview

1.4.1 Structure and role in survival signalling pathways

1.5 XBP1:General overview

1.6 IRE1α-XBP1 axis in MM

1.7 Drug development:Drugs affecting IRE1α-XBP1 axis

1.7.1 Proteasome inhibitors

1.7.2 HSP90 inhibitors

1.7.3 HIV protease inhibitors

1.7.4 Brefeldin A(BFA)

1.7.5 GRP78/BiP inhibitors

1.8 Targeting IRE1α-XBP1 axis in MM

1.9 Summary

Hypothesis

Airns

Chapter 2 Materials and Methods

2.1 Cell lines

2.1.1 MM cell lines

2.1.2 Other cell lines

2.2 Cell culture

2.2.1 Maintenance

2.2.2 Freezing

2.2.3 Thawing

2.3 Patient samples

2.4 Drugs and chemicals

2.5 Cellular assays

2.5.1 Determining the cellular growth rate

2.5.2 WST1 cell proliferation assay

2.5.3 Calculation of IC50

2.6 Preparation of nucleic acids

2.6.1 Isolation of RNA from cultured cells

2.6.2 Isolation of high quality RNA

2.6.3 Purification of DNA from agarose gel

2.6.4 Purification of plasmid DNA

2.6.5 Purification of PCR products

2.6.6 Quantification of plasmid and genomic DNA and RNA

2.7 Expression and manipulation of ribonucleic acids

2.7.1 Cloning

2.7.2 Transformation of chemically competent E.coli

2.7.3 Restriction enzyme digestion of plasmid DNA

2.7.4 In vitro transcription reaction

2.7.5 Reverse transcription for Real-time Quantitative PCR mQ-PCR)

2.8 Analysis of nucleic acids

2.8.1 Primer design

2.8.2 Polymerase chain reaction(PCR)

2.8.3 Agarose gel electrophoresis

2.8.4 DNA sequencing reaction

2.8.5 DNA sequencing analysis

2.8.6 RNA 6000 Nano Labchip assay

2.8.7 Gene expression profiling

2.9 Statistical analysis

2.10 Isolation and analysis of proteins from cultured mammalian cells

2.10.1 Whole cell protein isolation

2.10.2 Quantification of protein lysates

2.10.3 SDS polyacrylamide gel eleetrophoresis

2.10.4 Transfer of resolved proteins to polyvinylidene difluoride(PVDF)membrane

2.10.5 Detection of immobilized proteins on PVDF membranes

2.1 1 RNA interference

2.11.1 Gene therapy using lentiviral vectors

2.11.2 Lentivirus production and infection

2.11.3 Transient transfection of packaging cell line

2.11.4 Transduction ofviral supernatants in MM cell lines

2.12 List of primers,shRNAs,antibodies and reagents

Chapter 3 Investigating the clinical impact of XBP1 and IRE1α in MM

3.1 Characterising XBP1 and IRE1α in MM

3.1.1 Expression of IRE1α and XBP1 transcripts in MM

3.1.2 Quantification of XBP1 unspliced and spliced mRNA levels

3.1.3 Correlation of IRE1 with XBP1s/u expression

3.1.4 Mutational analysis of IRE1 and correlation with clinical outcome

3.2 Correlation of XBP1 and IRE1α expression with clinical outcome of patients

3.2.1 Correlation of XBP1s/u ratio with clinical data

3.2.2 Correlation of IRE1 mutational status with clinical data

3.3 Discussion

Chapter 4 Studying the downstream signalling and biology of XBP1 and IRE1α in MM

4.1 Optimising the delivery system for efficient XBP1 KD in MM cell lines

4.2 Absence of functional XBP1 decreases cell proliferation in MM cells

4.2.1 XBP1 KD in MM cell lines

4.2.2 Effects of XBP1 KDs on the survival of MM cell lines

4.3 Effects of IRE1α on MM cell proliferation

4.3.1 IRE1α KD in H929 eell lines

4.3.2 Effects of IRE1α KDs on the proliferation of MM cell lines

4.4 Treatment of known ER stressors to XBP1 and IRE1α-impaired cells increases their sensitivity to cell death

4.4.1 XBP1 KD increases sensitivity of MM cell to known ER stressors

4.4.2 IRE1α KD increases sensitivity of MM cell to known ER stressors

4.5 Discussion

Chapter 5 Drug Development

5.1 Does IRE1α RNase activity depend on its kinase activity and autophosphorylation?Developing an RNase in vitro assay

5.2 Testing of ATP-eompetitive inhibitors in the RNase in vitro assay

5.3 Effects of ATP-competitive inhibitors in vivo

5.3.1 Testing controls

5.3.2 Sunitinib

5.3.3 Sunitinib analogue

5.3.4 Amrinone

5.3.5 Other compounds

5.4 Discussion

Chapter 6 Final Discussion and Conclusion

Future work

References

Review Of Literatures

Acknowledgment

展开▼

摘要

目的:
  多发性骨髓瘤(MM)是一类骨髓中异常浆细胞(PC)过多为特征的疾病。MM约占所有癌症的1%,占所有癌症死亡的2%,只有2%的死亡发生在40岁以下人群中,其中位生存期约为5年。未折叠蛋白质反应(UPR)和内质网应激通路(ER)可以提供一个独特的通路,可以用来杀死MM细胞。转录因子X结合蛋白(XBP1)是PC和UPR分化的核心蛋白。肌醇酶(IRE1α)是一种具有丝氨酸-苏氨酸激酶和内切核糖核酸酶活性的ER跨膜蛋白,通过切割XBP1 mRNA形成活性XBP1来调节XBP1的活化。我们抑制XBP1和IRE1α的表达以及对MM细胞高度依赖的IRE1α/XBP1通路进行调控,导致新的凋亡信号的产生。通过对能够进行此种调控的药物的开发可用于未来高效治疗MM。
  方法:
  在多组MM细胞系和大量MM患者中测定IRE1α,总XBP1,XBP1u和XBP1s的表达水平。此外,IRE1α的突变状态被确定与患者临床特征和结果相关。另外,XBP1s/u的表达水平被证实与患者生存水平相关。XBP1在MM发病机制中起重要作用,通过使用siRNA介导的敲除(KD)方法,使用RNA干扰慢病毒,并使用PCR技术,在mRNA和蛋白质水平上抑制这些基因的表达,可能导致靶向MM细胞死亡。XBP1的shRNA转染效率,通过蛋白质印迹分析证实了选择性基因敲除XBP1s。为了分析药物开发体外测定中所使用的XBP1s/u mRNA样品的表达情况,使用RNA6000纳米测定Labchip。Pearson's/Spearman检验来确定MM细胞系和患者中IRE1α与总XBP1,IRE1α和XBP1s/u mRNA表达水平的相关性分析。所有统计学分析均采用SPSS v16.0进行。
  结果:
  1-所有细胞系和患者均高表达1-IRE1α(信号强度范围:53~7845),总XBP1(信号强度范围:1842-15042)。
  2-比较剪切过的(XBP1s)和未剪接形式(XBP1u)显示,所有MM患者的XBP1s表达高于XBP1u。
  3-与低比例(P=0.03,中位生存期56month VS40month,HR=1.75,95%CI=1.07-2.85)相比,XBP1s/u高于1.33的3例患者的总体生存期(OS)较短。提供完整的XBP1s KD的
  4-构建完整的XBP1s KD的4-shRNA重组体使细胞存活率降低50%,而提供部分XBP1s KD的shRNA构建体将存活率降低30%,证实XBP1s功能在MM存活中的“靶标”效应。
  结论:
  该试验着重于MM浆细胞的中心途径,因此确定了一系列MM患者中IRE1α,总XBP1,XBP1u和XBP1s的基因表达水平以及与突变状态相关的蛋白表达水平,以及临床特征和患者结局。
  该试验概述了可以有效地提出针对UPR的有效治疗MM的两种方法。
  第一种方法包括沉默UPR,IRE1α和XBP1等两个主要成分旨在诱导凋亡,并降低在压力条件下已经生长的肿瘤治疗额外ER应激的能力。
  该试验已经成功地证明通过抑制XBP1的表达导致MM细胞增殖减少,突出了XBP1在MM患者中的关键作用。此外发现,通过使用诸如硼替佐米等关键的抗骨髓瘤药物,MM细胞增殖可以进一步降低。
  尽管IRE1α的抑制对MM细胞的存活没有即时的影响,但大概是由于其参与了UPR中的许多途径,所以加入已知的ER应激物证明了该受损系统对MM细胞死亡的易感性。
  这些研究结果表明,单独或与ER应激诱导剂组合的靶向重要的UPR通路,可以被用作MM的靶向治疗,如IRE1α-XBP1通路。
  第二种方法通过使用具有酶活性的蛋白质小分子抑制物如IRE1α来抑制UPR组分。
  为了确定调节ER应激的最佳方法是治疗MM的癌症治疗策略,可能需要结合上述两种方法。因此靶向ER应激作为一种抗癌策略似乎非常有希望。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号