首页> 中文学位 >红外弱小目标检测的核支持向量机方法研究
【6h】

红外弱小目标检测的核支持向量机方法研究

代理获取

目录

声明

摘要

图目录

表目录

1 绪论

1.1 课题研究背景及研究意义

1.2 红外弱小目标检测方法研究现状

1.2.1 “先检测后跟踪”类检测算法

1.2.2 “先跟踪后检测”类检测算法

1.3 论文主要工作

1.4 章节安排

2 小目标检测图像分析

2.1 红外图像模型及特点

2.2 小目标特点分析

2.3 背景特征分析

2.4 红外图像噪声特性分析

2.5 本章小结

3 目标增强及背景抑制算法

3.1 目标增强算法

3.1.1 LoG算子

3.1.2 DoG算子

3.1.3 DoG和LoG的关系

3.1.4 DoGb算子

3.2 目标增强算法效果分析

3.3 阈值与图像分割

3.3.1 图像分割的定义

3.3.2 基于阈值的图像分割

3.3.3 自适应阈值方法

3.3.4 双阈值方法

3.3.5 阈值分割方法的优缺点

3.3.6 基于区域生长的图像分割

3.4 本章小节

4 基于KSVM的小目标识别方法

4.1 KSVM模型简介

4.2 红外小目标识别算法流程

4.3 本文算法与传统小目标检测算法的对比

4.4 对算法存在问题的探讨

4.4.1 阈值选取方案

4.4.2 去除重复点

4.5 本章小结

5 实验结果与讨论

5.1 实验环境

5.2 不同滤波方式对识别效果的影响

5.3 LoG核中s参数对识别效果的影响

5.4 不同核函数对识别效果的影响

5.5 红外小目标识别算法对比分析

5.6 本章小结

6 总结与展望

6.1 全文总结

6.2 未来工作

参考文献

致谢

个人简历、在学校期间发表的学术论文与研究成果

展开▼

摘要

随着科技的进步,人工智能逐渐应用于各种场合,特别是在图像处理方向,人工智能更是取得了巨大的进步。红外图像是通过热感应摄像机拍摄到的一系列灰度值图像,目标的热度越高,其在图像中显示的灰度值也就越大。通常,飞机、导弹等热量极高的物体通常在红外图像中显示为一个亮点,而云背景杂波的灰度值相对较低,因此可以清晰的看出飞机和导弹的运动迹象。但是,在目标距离摄像机较远时,或目标与云背景有重叠时,其灰度值并不比云背景高出太多,且目标的形状较小,通过人眼很难注意到。而且,人工观察红外图像的小目标需要消耗极大的人力,也无法做到24小时实时监控,准确性与实时性都不能够令人满意。因此,红外图像中弱小目标的自动检测技术应时而生,越来越多的方法被用来检测小目标。
  目前图像识别领域最好的算法通常是深度学习算法,如卷积神经网络(Convolutional Neural Networks CNN)、长短时记忆网络(Long Short Term Memory Network,LSTM)等。但深度学习算法通常无法用于识别红外图像的小目标,因为小目标在整幅图像中所占面积极小,对整幅图像的影响也不大。而深度学习算法通常是将整幅图像作为训练数据输入,因此直接采用深度学习算法很难准确地识别出小目标,而且深度学习还需要消耗大量的时间,不能够满足小目标识别的实时性要求。传统的小目标识别算法通常是基于提升小目标区域的对比度,之后通过一些图像分割算法,如阂值分割等,对小目标区域进行提取。采用这种方法可以应用于大多数情况,但当小目标的灰度值低于云杂波的灰度值时,传统的方法通常很难正常识别。
  为解决以上的问题,本文提出了一种将传统图像对比提升算法和机器学习算法相结合的小目标识别方案,同时包含了两类算法的优势,在保证小目标识别准确率的同时,极大地降低了小目标识别的虚警率,即很少会错误检测,把背景识别出小目标。本文算法分为三步:首先,采用LoG卷积函数对原始包含小目标的红外图像进行卷积,提升小目标区域的对比度;其次,采用阈值分割算法,设定一个较低的阈值,提取出所有可能是小目标的11*11像素区域;最后,采用核支持向量机(Kernel Support Vector Machine,KSVM)对上一步提取的区域进行识别,最终确定小目标的位置。本文算法避免了将大量无用背景数据输入KSVM,从而极大的提升了算法的运行速度。而KSVM在最后一步确定小目标区域时,可以极大地降低虚警率,提升算法的识别效果。通过四组红外图像的实验验证,本文算法在保证正确率的同时,虚警率远低于传统算法。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号