首页> 中文学位 >剩余污泥作为低碳氮比生活污水补充碳源的脱氮试验研究
【6h】

剩余污泥作为低碳氮比生活污水补充碳源的脱氮试验研究

代理获取

目录

文摘

英文文摘

1 概 述

1.1 低碳氮比生活污水脱氨

1.1.1 低碳氮比生活污水脱氮的工艺技术

1.1.2 反硝化碳源

1.1.3 脱氮的影响因素

1.2 水解酸化工艺及其在低碳氮比污水处理中的研究与应用

1.2.1 水解酸化特点

1.2.2 水解酸化作为污水预处理的应用

1.2.3 水解酸化作为剩余污泥预处理的应用

1.2.4 水解酸化作为污水和污泥联合预处理的应用

1.3 剩余污泥碱解发酵

1.3.1 剩余污泥的碱解预处理现状

1.3.2 污泥碱解机理研究

1.4 课题研究背景、目的和内容

1.4.1 研究背景

1.4.2 研究目的

1.4.3 研究内容

2 试验设备与试验设计

2.1 H/AMBBR/O组合脱氨工艺

2.1.1 工艺概述

2.1.2 试验工艺流程及工艺中各反应器的结构特点

2.1.3 填料的选用

2.1.4 试验污水来源及基本水质组成

2.2 剩余污泥水解酸化工艺

2.2.1 工艺概述

2.2.2 剩余污泥及其上清液的性质

2.2.3 剩余污泥的碱解发酵

2.3 试验仪器与分析方法

3 H/AMBBR/O组合工艺的启动

3.1 AMBBR脱氨预试验

3.1.1 试验方法

3.1.2 试验结果与分析

3.2 H/AMBBR/O组合工艺的启动

3.2.1 水解酸化池的启动

3.2.2 AMBBR的启动

3.2.3 好氧池的启动

3.2.4 启动后组合工艺的运行情况

3.3 本章小结

4 H/AMBBR/O组合工艺处理低碳氮比生活污水效能分析

4.1 试验基本参数条件的选取与控制

4.1.1 DO的影响及控制

4.1.2 污泥回流比(S)的影响与控制

4.1.3 水解酸化池水力停留时间的影响与控制

4.2 硝化液回流比(R)对工艺处理效果的影响试验

4.2.1 COD的去除情况对比

4.2.2 氨氮的去除情况对比

4.2.3 TN的去除情况对比

4.3 AMBBR水力停留时间对工艺处理效果的影响试验

4.3.1 试验方案

4.3.2 COD的去除情况对比

4.3.3 氨氮的去除情况对比

4.3.4 TN的去除情况对比

4.4 温度对工艺处理效果的影响试验

4.4.1 试验方案

4.4.2 COD的去除情况对比

4.4.3 氨氮的去除情况对比

4.4.4 TN的去除情况对比

4.5 H/AMBBR/O组合工艺最优工况条件下沿程数据分析

4.6 水解酸化池效能综合分析

4.6.1 无剩余污泥回流条件下水解酸化水效能分析

4.6.2 剩余污泥回流条件下水解酸化池效能分析

4.7 本章小结

5 剩余污泥碱解条件的确定及上清液反硝化速率和反硝化动力学研究

5.1 试验方法

5.1.1 剩余污泥碱解SRT的确定

5.1.2 剩余污泥碱解上清液的反硝化试验

5.1.3 试验样品的处理及指标分析

5.2 剩余污泥碱解条件的确定

5.2.1 碱解pH值的确定

5.2.2 剩余污泥碱解SRT的确定

5.3 剩余污泥碱解发酵过程的污泥减量

5.4 几种碳源反硝化效果对比及动力学分析

5.4.1 反硝化过程分析

5.4.2 反硝化动力学研究

5.5 本章小结

6 剩余污泥碱解上清液的回用试验

6.1 剩余污泥碱解上清液的回用试验研究

6.1.1 试验方法

6.1.2 单独上清液回用试验

6.1.3 上清液回用前后生活污水对比试验

6.2 回用量的分析及回用量的确定方法

6.2.1 碳源投加的研究

6.2.2 上清液回用量的分析及确定

6.2.3 上清液引入氮素的影响

6.3 剩余污泥碱解上清液回用到A/O工艺

6.3.1 剩余污泥碱解上清液回用方式

6.3.2 不同温度条件及不同回用量下污染物去除效能对比分析

6.4 剩余污泥碱解上清液回用过程影响因素研究

6.4.1 上清液中氮对回用的影响

6.4.2 上清液中磷对回用的影响

6.4.3 上清液回用对活性污泥的影响

6.4.4 上清液回用前后污染物去除效能分析

6.5 本章小结

7 H/AMBBR/O工艺和碱解上清液回用的A/O工艺的对比分析

7.1 两工艺的最佳工况对比

7.2 两工艺的运行方式和费用对比

7.3 本章小结

8 结论和建议

8.1 结论

8.2 创新性研究成果

8.3 建议

致谢

参考文献

附 录

展开▼

摘要

我国城市污水普遍存在的碳氮比偏低的问题逐渐成为城市污水处理达标的瓶颈;同时,作为目前生活污水处理中运用最普及的活性污泥技术,其产生的大量剩余污泥的处理与处置费用在污水厂运行成本中所占的比例也越来越大。本课题针对低碳氮比生活污水脱氮以及剩余污泥处理的问题,分别从工艺和碳源两方面入手进行研究。在工艺方面,为提高低碳氮比污水中易生物降解有机物的含量,并对现有污水处理厂进行工艺优化,设计了水解酸化/缺氧悬浮填料移动床/好氧组合工艺(简称H/AMBBR/O工艺),进行实验室中试研究,并探索该工艺应用于城市污水高效脱氮和污泥减量的可行性。在碳源方面,通过对A/O工艺的二沉池剩余污泥进行碱解发酵,提取上清液作为反硝化碳源,考察上清液的反硝化效率,利用阶段比反硝化率的概念,提出上清液回用量的确定方法,并将上清液回用到实际运行的A/O系统中,考察上清液碳源的反硝化速率及其回用对A/O系统的影响。最后,分别从处理效能和投资运行费用(预估)方面综合比较了H/AMBBR/O工艺和上清液回用的A/O工艺的最佳运行工况。试验研究的主要结论如下:
   ①H/AMBBR/O工艺的试验结果
   首先,在10.9~13℃,通过反硝化预试验对比了悬浮填料两相污泥和纯缺氧污泥的反硝化性能。结果表明,悬浮填料两相污泥对COD、氨氮、硝酸盐和TN的去除率分别达到74.37%、10.48%、60.86%和21.42%,远高于纯缺氧污泥的58.89%、3.71%、41.58%和13.75%;且生物膜的活性良好。因此,在缺氧池投加悬浮填料有利于增加污泥量,改善反硝化污泥活性,减弱冬季气温的影响。
   其次,研究了H/AMBBR/O组合工艺的启动方式。采取接种污泥、单池分别启动的方式对水解酸化池、AMBBR和好氧池同时进行培养驯化。其中水解酸化池采用连续进出水、逐渐增大负荷的方式,在15d内启动成功;AMBBR采用好氧曝气挂膜、缺氧转换的方式,历时20d,挂膜成功。组合工艺启动后,处理效果在两周时间内达到稳定。
   再次,通过单因素对比试验,筛选出H/AMBBR/O工艺的最优工况。结果表明:1)水解酸化池水力停留时间以2.5h为宜,过长的停留时间会消耗更多的碳源;2)AMBBR水力停留时间越长,反硝化反应进行得越充分,试验最佳停留时间为3h;3)硝化液回流比越大对反硝化越有利,但是动力消耗也大,试验选取合适的硝化液回流比为300%;4)当平均水温高于18.0℃时,硝化和反硝化过程不受抑制,工艺处理效果较理想,当水温低于18.0℃时,硝化反应不完全,工艺处理效果明显变差,尤其是TN出水浓度远不能达到试验预期目标,建议经济条件较好的污水处理厂可以考虑在好氧池投加填料,增强低温下的硝化效果。因此,在进水流量Q=50L/h,好氧池HRT为6.0h,二沉池HRT为1.2h,且填料投配率为30%的情况下,最优工况的条件是:水解酸化池水力停留时间为2.5h,AMBBR水力停留时间为3h,硝化液回流比300%,平均水温高于20.0℃,此时,组合工艺获得最佳处理效果:COD、氨氮和TN的平均去除率分别达到90.35%、98.24%和71.92%,对应出水浓度分别为22.6mg/L、0.89mg/L和16.35mg/L。
   最后,对比分析了水解酸化池分别作为纯污水和污泥污水同时预处理反应器的效能,结果表明,将二沉池污泥回流至水解酸化池,既可以改善与增加碳源,为后续反硝化提供有利条件,也可以同时实现污泥的资源化和减量化,污泥减量率可达到56%以上。
   ②剩余污泥碱解上清液的回用到A/O工艺的试验结果
   首先,通过试验研究了剩余污泥碱解发酵的较优条件以及碱解对污泥的减量作用。确定了碱解pH值、以及搅拌条件,并在此基础上,通过静态连续试验的指标分析、反硝化速率对比以及污泥破解后的扫描电镜照片,确定较优的SRT为9d;同时,计算得出剩余污泥在碱解过程中的污泥减量率达到56.3%。
   其次,分别考察了碱解上清液、乙酸钠和生活污水三种碳源的反硝化效能及其反硝化动力学,进行综合比较,确定碱解上清液可以作为反硝化脱氮的碳源。
   进一步的研究考察了剩余污泥碱解上清液作为反硝化碳源的反硝化速率,并据此初步确定上清液的回用量。采用不同的VFA/N比值进行批式试验,考察硝酸盐的反硝化情况,选择出试验硝酸盐浓度下的较优比值,并应用于实际生活污水中,与纯生活污水脱氮对照,考察回用的可行性,以及回用量的确定。结果显示,VFA/N比值的增加能加快反硝化反应,且比值越高,出现亚硝酸盐峰值越大,时间越滞后,硝酸盐的降解和亚硝酸盐的变化情况跟pH值能够较好地吻合;将上清液以一定比例投入生活污水,反硝化速率明显提高,平行组6h反硝化量分别达到47.02和33.95mg/L,为单纯生活污水反硝化量的2~3倍。试验进一步根据不同反应时间段的反硝化速率提出阶段比反硝化率的概念,并结合初始VFA/N比值以及反应过程中pH值的变化粗略判断出上清液的回用量,对生产实践具有一定的指导意义。
   最后,根据上清液回用量的确定方法进行了实际A/O工艺的回用试验研究。分别于冬季和春季不同温度条件下进行了两次上清液的回用试验。冬季试验,A/O工艺产泥量较低,上清液回用量受限,为50ml/min左右,小于理论回用量;春季试验,上清液的回用量为85ml/min左右,与理论回用量相当。分别对两次上清液回用前后系统对COD、氨氮和TN的去除效能,以及上清液回用过程中引入的氮磷对系统脱氮除磷的影响进行了分析。结果表明:1)冬季试验情况下,实际TN去除量接近42mg/L,远高于理论计算值28mg/L;2)春季试验结情况下,基于阶段比反硝化速率计算的理论TN去除量为50.4mg/L,和实际的55mg/L较为接近,TN的平均出水浓度满足GB18918-2002的一级A标准;3)两次回用过程中引入系统的总氮占原污水总氮的10.55%和21.27%,结合TN的去除情况分析,认为该比例对系统脱氮的影响不明显,可忽略;上清液回用过程中引入总磷占原污水总磷的20.86%和79.60%,对应的出水TP浓度分别为2.84和3.52mg/L,由于系统没有设置专门的除磷装置,磷在系统中的循环可能会造成累积,因此,长时间的回用可考虑在上清液中投加盐类形成磷沉淀后进行回收。
   ③H/AMBBR/O工艺和剩余污泥碱解上清液回用的A/O工艺的最优工况对比分析
   两工艺最佳工况的污染物去除效能对比结果表明:1)两工艺对COD和氨氮均有较好的去除效果,COD和氨氮的出水浓度均能满足GB18918-2002的一级A排放标准;2)上清液回用的A/O工艺出水TN浓度低于15mg/L,能够满足GB18918-2002一级A排放标准,而H/AMBBR/O工艺出水TN仅能满足GB18918-2002的一级B排放标准;3)上清液回用的A/O工艺反硝化能力以及灵活性更强,而H/AMBBR/O工艺能够实现污水污泥处理以及内碳源回用的一体化,运行管理更简便。
   两工艺运行费用预测结果表明,费用差别产生于AMBBR中的悬浮填料和用于调节上清液pH值的酸碱试剂。其中,悬浮填料使用寿命较长(长达数十年之久),且为一次性投资材料,而酸碱试剂为日常运行材料,其消耗费用约为悬浮填料的7倍。因此,实际应用时还需综合考虑污水的处理要求和当地的经济水平。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号