首页> 中文学位 >电阻连续加热成形电-热-力耦合试验及模拟
【6h】

电阻连续加热成形电-热-力耦合试验及模拟

代理获取

目录

文摘

英文文摘

1 概述

1.1 引言

1.2 连续加热方式在成形过程中的应用

1.3 电阻连续加热对金属成形的影响

1.3.1 电阻连续加热技术在材料成形中的应用

1.3.2 电流对金属塑性成形过程影响的研究

1.4 电阻连续加热成形数值分析

1.4.1 接触电阻模拟现状

1.4.2 接触电阻的处理方法

1.4.3 电-热-力耦合在在数值模拟中的实现

1.5 本研究的意义和内容

1.5.1 研究意义

1.5.2 研究内容

2 电阻连续加热成形过程基本理论

2.1 引言

2.2 电-热-力耦合基本理论分析

2.3 瞬态温度场的有限元分析

2.4 瞬态电场的有限元分析

2.5 刚粘塑性的有限元理论

2.6 ABAQUS隐式积分算法

2.7 本章小结

3 电阻连续加热成形过程试验研究

3.1 引言

3.2 电阻连续加热成形装置分类

3.3 试验系统及试验装置

3.4 典型的电阻连续加热成形工艺过程

3.5 实验材料与试样

3.6 试验结果与分析

3.6.1 典型的成形前模具内电阻加热过程

3.6.2 典型电阻连续加热成形过程

3.6.3 工艺参数对对电阻连续加热成形过程的影响

3.6.4 材料性能及接触面质量对电阻连续加热成形过程的影响

3.6.5 模具结构及润滑对成形过程的影响

3.6.6 微观组织分析

3.6.7 电阻连续加热成形工艺过程典型缺陷分析

3.7 本章小节

4 电阻连续加热成形过程电热耦合有限元模拟

4.1 引言

4.2 有限元模型的建立及简化

4.3 接触电阻模型

4.4 接触电阻设置

4.5 材料物理性能参数

4.6 模拟结果分析

4.6.1 接触电阻模型确认

4.6.2 电阻加热过程中电势变化

4.6.3 温度场模拟结果

4.6.4 电流强度对温度场的影响

4.6.5 模具结构对温度场的影响

4.7 长轴类工件不同加热形式三维数值模拟

4.7.1 加热方式的选择

4.7.2 加热效果比较

4.8 本章小结

5 电阻连续加热成形过程电-热-力耦合有限元模拟

5.1 引言

5.2 热-力耦合有限元模型的建立及简化

5.3 42CRMo4材料塑性变形本构方程

5.3.1 流变应力及本构关系

5.3.2 不同变形条件下42CrMo钢真应力-真应变曲线的分析

5.4 电-热-力耦合过程模拟模拟方法及过程

5.5 模拟结果分析

5.5.1 电阻连续加热成形过程温度场分析

5.5.2 电阻连续加热成形应力及应变场分析

5.5.3 电阻连续加热成形模具温度及应力场分析

5.5.4 载荷分析

5.5.5 成形效果分析

5.5.6 电流强度对成形过程的影响

5.6 本章小节

6 电阻连续加热成形过程参数优化

6.1 引言

6.2 基于多项式响应面法近似模型建立

6.2.1 拉丁超立方抽样实验设计

6.2.2 多项式响应面模型

6.2.3 近似模型的误差评估

6.3 基于遗传算法的电流参数优化

6.3.1 遗传算法的要素

6.3.2 基于遗传算法的优化过程

6.4 本章小节

7 结论及展望

7.1 结论

7.2 工作展望

致谢

参考文献

附录

A 作者在攻读博士学位期间发表的论文目录

B 作者在攻读博士学位期间取得的科研成果目录

C 将电-热耦合模拟结果中各节点温度传递给热-力耦合模拟程序

D 将热-力耦合模拟结果中各节点位移及温度传递给电-热耦合模拟程序

展开▼

摘要

传统的热成形工艺由于高耗能、低材料利用率和较长的生产周期已难以满足当今社会对材料成形领域提出的节能、低耗、绿色制造的要求;另一方面,随着时代的发展,新型材料的不断产生,其成形窗口窄,对温度敏感,成形过程中相变复杂等特点也为材料成形提出了更高的要求。为了适应产业发展的需求,许多新兴的加工技术手段应运而生,不仅扩展了材料成形的领域,也改变了锻造行业落后的面貌。连续加热成形技术是将加热过程贯彻到整个成形过程的先进成形技术,它将连续加热技术和传统的锻造成形技术相结合,以保证材料始终在锻造温度内实现塑性变形,在发挥传统成形方法优势的同时,大大的降低了成形力,减少了零件的整个生产周期,减少了能量的损耗,避免了由于工件多次加热对成本和产品质量的影响,越来越受到人们的关注,其中电阻连续加热成形技术尤为引人瞩目。
   电阻连续加热成形技术是采用电阻加热方式在成形工件的工作位置对工件实行的局部或整体的加热,并在成形过程中不断的为工件加热使之始终处于高温状态。电阻加热具有热效率高、设备简单、控制方便、受模具结构影响较小等特点,是连续加热成形技术的理想热源。更为重要的是,在电阻连续加热成形过程中,工件中由电流通过而引起的电场将对金属的变形行为进行改善。但是,电阻连续加热成形技术是一个复杂的成形过程,涉及到电学、传热学、塑性成形力学、材料科学、计算机控制技术等多门学科,影响因素众多且相互之间的关系复杂,阻碍了电阻连续加热技术的进一步发展。本文在对以往连续加热成形技术的研究基础上,对电阻连续加热成形技术进行的分类,并通过自主设计的电阻连续加热成形装置对42CrMo4棒料进行了热成形试验并成功的开发了能够模拟电阻连续加热成形过程的电-热-力耦合有限元模型,为今后电阻连续加热成形的发展提供了坚实的基础。
   本文首先根据电极与成形工件的关系将电阻连续加热成形技术的模具结构分为三类,即电极不与工件直接接触、电极直接与工件接触及电极与模具、工件部分接触三类,并将电阻连续加热成形系统分为加热系统、温度控制及检测系统、成形系统、绝缘系统四个子系统。采用电极不与工件直接接触的模具结构设计了42CrMo4棒料电阻连续加热成形试验装置。将电阻连续加热成形过程分为成形前模具内加热和电阻加热情况下的成形两个部分,通过试验的方法分别研究了工艺参数、材料性能、模具结构及铝合金垫层等对加热温度、工件温度场分布、成形力和成形过程的影响,并对成形过程中产生的缺陷进行了研究,分析了缺陷产生的机理并提出了解决的方法。
   由于电阻连续加热成形过程包括了导电、导热和塑性变形的复杂非线性过程,采用试验的方法难以对其进行全面深入的研究。而目前真正的电-热-力耦合模拟还无法实现,因此本文采用将电-热耦合和热-力耦合分别计算后顺序耦合的方法,建立了电阻连续加热成形技术的电-热-力耦合有限元模型。通过模拟与试验结果的对比,在电-热耦合中建立的电阻率与接触面温度成反比关系的接触电阻模型能有效的反映加热过程中接触电阻对加热温度的影响,验证了数学模型的准确性,得到了电阻连续加热过程中温度、电流密度、应力应变及等分布,为复杂零件的电阻连续加热成形和进一步的优化参数提供了条件。
   为了使工件在电阻连续加热成形过程中温度保持恒定,在成形过程中对加热电流强度的适当控制是该方法成功与否的关键。为了得到合理的加热电流强度曲线,采用拉丁超立方抽样方法及二次多项式相应法建立了加热电流与与坯料温度之间的十元二次近似模型,并采用遗传算法对加热电流强度进行参数优化,从而得到等够在成形过程中保持坯料温度变化在12℃左右的加热电流曲线。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号