首页> 中文学位 >铝合金表面Ni-Co-P三元合金纳米化学复合镀层的制备与性能研究
【6h】

铝合金表面Ni-Co-P三元合金纳米化学复合镀层的制备与性能研究

代理获取

摘要

铝及铝合金性能优良,应用广泛,但其硬度低、耐磨性差、易发生磨损腐蚀的缺点也越来越突出。采用化学复合镀工艺可显著提高其性能。但目前复合镀层的基质大多选用Ni-P二元合金;且存在纳米微粒在镀液中的分散效果不好;微粒尺寸、微粒种类对镀层性能影响的研究相对较少等问题。为此,本文在铝合金表面开展了以Ni-Co-P三元合金为镀层基底,Al2O3、Si3N4、SiC为增强颗粒的复合镀层的化学法制备研究,通过三步超声法优化了纳米微粒在镀液中的分散效果,成功制备了Ni-Co-P/Al2O3、Ni-Co-P/Si3N4、Ni-Co-P/SiC纳米复合镀层。采用SEM、EDS、XRD、自动划痕仪、维氏硬度计、高速往返磨损试验机、电化学工作站等设备,对镀层的表面形貌、成分、微观结构、结合力、硬度、耐磨性和耐蚀性进行了检测,获得了镀液中微粒浓度、热处理温度、微粒尺寸和微粒种类对镀层结构和性能的影响规律和机理。
  本研究主要内容包括:①制备了Al2O3微粒粒径为60nm、镀液浓度分别为6、9、12、15g/l的Ni-Co-P/Al2O3纳米化学复合镀层。发现:镀层为胞状结构,当Al2O3浓度超过12 g/l时,微粒有明显的团聚。随镀液中Al2O3浓度增加,镀速、镀层中Al2O3含量、硬度、摩擦系数、耐蚀性均先增加后降低,前四个指标在浓度为12 g/l时达到最大值,但9 g/l时耐蚀性最好。微粒浓度在12 g/l及以下时,耐磨性随微粒浓度增加而增加。微粒浓度为15 g/l时,摩擦距离超过600 m后,镀层磨损性能低于其它颗粒浓度得到的复合镀层。②制备了Si3N4粒径为20nm、浓度为12g/l的Ni-Co-P/Si3N4纳米化学复合镀层,对镀层进行了不同温度(200、300、400、500℃)的热处理。发现:300℃及以上温度热处理时,胞状结构明显增大,镀层与基体的结合力增强。200-400℃热处理,镀层各元素含量没有明显变化,但500℃热处理后,镀层表面发生氧化。热处理促使镀层晶化,并且产生 Ni3P相等磷和镍的化合物,导致400℃及以下热处理时, Ni-Co-P以及Ni-Co-P/Si3N4镀层的硬度随着热处理温度升高而明显增加,500℃热处理后硬度下降,但Ni-Co-P下降幅度更大。复合镀层耐磨性随热处理温度的变化趋势与硬度相似,都是400℃达到最大。200℃热处理后的镀层耐腐蚀性提高,但继续升温到300-400℃,耐蚀性下降,500℃热处理后耐蚀性有所回升。③制备了SiC浓度为12g/l、粒径分别为40、200、800nm的Ni-Co-P/SiC化学复合镀层。发现:三种镀层表面均为胞状结构,粒径对镀层厚度没有明显影响;40nm微粒的复合镀层,表面有团聚现象,200和800nm微粒增强的复合镀层,表面有明显孔隙。微粒尺寸越小,虽然微粒沉积百分量有所减少,但镀层中数量密度更大,使得镀层晶粒更细,硬度和耐磨性越好。200nm增强的复合镀层平均摩擦系数最低。800nm增强的复合镀层,在摩擦后期,微粒容易脱落,造成剧烈磨损。沉积越细微粒的镀层,更加致密,耐蚀性越好。④用粒径为800nm的Al2O3、Si3N4、SiC在颗粒浓度为12g/l的条件下,制备了Ni-Co-P/Al2O3、Ni-Co-P/Si3N4、Ni-Co-P/SiC三种化学复合镀层(分别标记为NAL、NSN、NSC)。发现:NAL的微粒团聚现象较为严重,三种镀层的P含量变化较明显;镀层中微粒百分含量排序为:NSN>NAL>NSC,微粒数量密度排序为:NSC>NAL>NSN。三种镀层都有相同的Ni晶主峰,但晶粒大小不同,晶粒大小与耐蚀性排序均为:NAL>NSN>NSC。镀层的硬度排序均为:NSC>NSN>NAL。SiC的耐磨性最好,摩擦系数最低,耐磨性和摩擦系数的排序分别为:耐磨性NSC>NAL>NSN;摩擦系数NAL>NSN>NSC。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号