首页> 中文学位 >盐胁迫对水稻植株生长、籽粒发育影响及1-MCP调控作用
【6h】

盐胁迫对水稻植株生长、籽粒发育影响及1-MCP调控作用

代理获取

目录

声明

摘要

ABSTRACT

CONTENTS

LIST OF ABBREVIATIONS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

1.2 LITERATURE REVIEW

1.2.1 Salt stress

1.2.2 Harmful effects of salt stress on plants

1.2.3 Effects of salt stress on rice growth and development

1.2.4 Effects of salt stress on rice physiological characteristics

1.2.5 Role of ethylene in rice growth and development

1.2.6 1-Methylecyclopropene (1-MCP) as an ethylene inhibitor under salt stress

1.2.7 Effects of 1-MCP on rice spikelets development

1.3 QUESTIONS OF RESEARCH

1.4.1 Objectives

1.4.2 Significance of the research

1.5 EXPERIMENTAL DESIGN

CHAPTER 2 SODIUM CHLORIDE STRESS DURING EARLY GROWTH STAGES ALTERED PHYSIOLOGICAL AND GROWTH CHARACTERISTICS OF RICE

2.1 INTRODUCTION

2.2 Materials and Methods

2.2.1 Location and growth conditions

2.2.2 Plant material and experimental design

2.2.3 Plant sampling

2.2.4 Calculations of seed emergence characteristics

2.2.5 Seedling height reduction

2.2.6 Relative dry weight

2.2.7 Calculations of Growth characteristics

2.2.8 Photosynthetic activities

2.2.9 Statistical analysis

2.3 RESULTS

2.3.1 Effects of salt stress on seedling emergence characteristics

2.3.2 Growth characteristics at early seedlings stage

2.3.3 Seedling height reduction rate at early seedling stage and maximum tillering stage

2.3.4 Physiological and growth characteristics at maximum tillering stage

2.3.5 Relative dry weight at early seedling stage and maximum tillering stage

2.3.6 Tillering dynamics

2.3.7 Leaf Area

2.3.8 Growth characteristics at maximum tillering stage

2.3.9 Categorization of rice cultivars against sodium chloride

2.4 DISCUSSION

CHAPTER 3 1-METHYLCYCLOPROPENE MODULATES PHYSIOLOGICAL AND AGRONOMICAL CHARACTERISTICS OF RICE TO SALT STRESS

3.1 INTRODUCTION

3.2 MATERIALS AND METHODS

3.2.1 Experimental design

3.2.2 Soil condition and fertilizer

3.2.3 1-MCP application

3.2.4 Plant sampling

3.2.5 Dry matter measurement

3.2.6 Leaf area index

3.2.7 Physiological parameters

3.2.8 Statistical analysis

3.3 RESULT

3.3.1 1-MCP modulates physiological characters of rice under salt stress from maximum tillering stage to full heading stage

3.3.2 1-MCP modulates agronomical characters

3.4 DISCUSSIONS

CHAPTER 4 EFFECTS OF 1-METHYLCYCLOPROPENE ON RICE SUPERIOR AND INFERIOR SPIKELETS DEVELOPMENT AND GRAIN YIELD UNDER SALT STRESS

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS

4.2.7 Spikelet grain weight and grain filling rate

4.2.8 Ethylene production

4.2.9 Statistical analyses

4.3 RESULTS

4.3.1 Effects of 1-MCP on ethylene productions in spikelets of rice under salt stress

4.3.2 Effects of 1-MCP on rice grain filling process under salt stress

4.3.3 Effects of 1-MCP on rice grain yield and its components

4.4 DISCUSSION

CHAPTER 5 1-METHYLECYCLOPROPENE REGULATE BIOCHEMICAL CHARACTERISTICS OF RICE RESPONSE TO SALT STRESS

5.1 INTRODUTION

5.2 MATERIALS AND METHODS

5.2.1 Experimental design

5.2.2 Soil condition and fertilizer

5.2.3 1-Methylcyclopropene application

5.2.4 Plant sampling

5.2.5 Determination of proline and soluble protein

5.2.6 Determination of antioxidants

5.2.7 Chlorophyll contents

5.2.8 Statistical analysis

5.3.1 Effects of 1-MCP on antioxidants

5.3.2 Proline contents

5.3.3 Soluble protein

5.3.4 Chlorophyll a,b,carotenoids,and total chlorophyll

5.4 DISCUSSION

CHAPTER 6 EFFECTS OF SALT STRESS ON RICE PROTEOMICS AND BIOCHEMICAL FEATURES

6.1 INTRODUCTION

6.2 MATERIALS AND METHODS

6.2.1 Growth conditions,Plants material,and experimental design

6.2.2 Soil and plant sampling

6.2.3 Lcaf proteomics analysis

6.2.4 Cell membrane injury

6.2.5 Rice root activity

6.2.6 Na+ concentration in soil and plant

6.2.8 Cl- concentration in soil and plant

6.2.10 Statistical analysis

6.3.2 Na+ and Cl- in rice plant

6.3.3 Effects of NaCl on rice flag leave’s Cell membrane injury

6.3.5 Effects of NaCl on leaf proteomics in rice at maximum tillering stage

6.4 DISCUSSION

CHAPTER 7 MAJOR FINDINGS AND FUTURE PERSPECTIVES

7.1 Novel Findings

7.2 Major Findings

7.3 Future Perspectives

REFERENCES

LIST OF PUBLICATIONS

ACKNOWLEDGEMENTS

AUTHOR RESUME

展开▼

摘要

水稻是谷类作物中对根际土壤盐分比较敏感的植物。盐胁迫引起的渗透胁迫、离子胁迫以及激素(乙烯)胁迫可抑制水稻生长及发育,而乙烯释放量增加又会影响水稻强势粒与弱势粒的发育。1-甲基环丙烯(1-MCP)可通过抑制乙烯与受体的结合降低植物乙烯释放量。目前1-MCP对盐胁迫下水稻生长特征及籽粒发育特性的影响尚未有研究报道。因此,本研究通过解析盐胁迫环境下水稻生理生化特征及相关蛋白表达,明确盐渍区水稻产量潜力低、植株耐盐性能差的内在机理,并通过1-MCP调控水稻强势粒、弱势粒发育特征来提高盐渍区水稻产量潜力,促进盐渍区土壤资源的高效利用。
  盆栽试验于2016-2017年在中国水稻研究所温室进行。试验一为水稻品种与盐胁迫交互影响水稻耐盐性能及蛋白表达试验。水稻品种为两优培九(籼稻)与日本晴(粳稻);盐胁迫水平包括0(对照,CK),1.5g NaCl/kg干土(低度盐胁迫,LS),4.5g NaCl/kg干土(中度盐胁迫,MS)以及7.5g NaCl/kg干土(重度盐胁迫,HS)。试验二为1-MCP对不同水稻品种盐胁迫缓解效应的生理生化机理试验,1-MCP处理包括水稻孕穗中期施用1-MCP以及不施用1-MCP,水稻品种及盐胁迫水平同试验一。
  研究结果表明,盐胁迫抑制了水稻出苗率,降低了水稻苗期及分蘖盛期的生长特征参数。日本晴未能在HS水平下存活。盐胁迫也在一定程度上降低了供试水稻剑叶光合活力,并且盐胁迫对日本晴光合活力的抑制作用高于两优培九。基于水稻干物重下降速率分析表明,苗期与分蘖盛期的两优培九在HS水平下分别属于对盐胁迫中等耐受及耐受水平,而日本晴在HS水平下属于对盐胁迫敏感水平。两优培九对盐分的耐性高于日本晴。
  水稻孕穗中期施用1-MCP可降低水稻籽粒,尤其显著降低弱势粒的乙烯释放量,并可显著提升水稻弱势粒的灌浆速率。与不施用1-MCP相比,施用1-MCP的供试水稻剑叶光合速率、气孔导度、呼吸速率、SPAD值以及叶面积指数均有较大幅度提高。1-MCP对两优培九灌浆速率及籽粒重量的提升作用优于日本晴。与不施用1-MCP相比,施用1-MCP的两优培九在CK、LS、HS水平下的产量分别提升35.6%、37.6%和35.3%。结果表明,1-MCP可显著提升盐胁迫下水稻剑叶光合特征及籽粒灌浆速率,尤其对水稻弱势粒的提升作用具有显著优势。
  盐胁迫增加水稻植株乙烯释放量,而水稻孕穗中期施用1-MCP可显著降低植株乙烯释放量。施用1-MCP可改善水稻叶片生化特征,包括提高超氧化物歧化酶活性、叶绿素含量、脯氨酸含量和蛋白质合成等,降低叶片丙二醛、H2O2含量,进而提高盐胁迫下供试水稻干物重等。结果表明,1-MCP可用于改善盐胁迫下水稻生理、生长及生化特征参数,可作为提升盐渍区土壤及水稻生产力的重要改良措施。
  随盐胁迫水平提高,日本晴的剑叶细胞膜透性要高于两优培九。盐胁迫也显著降低了供试水稻根系活力以及剑叶的蛋白表达。盐胁迫对两优培九根系活力的抑制作用轻于日本晴处理。ITRAQ蛋白定量分析表明,与CK相比,LS、MS、HS处理的两优培九叶片分别有28、368和491个蛋白上调表达;与LS相比,MS和HS处理的两优培九叶片分别有425和541个蛋白上调表达;与MS相比,HS处理的两优培九叶片有324个蛋白上调表达。日本晴在HS盐胁迫水平下未能存活。与CK相比,LS和MS处理的日本晴叶片分别有239和337个蛋白上调表达;与LS相比,MS处理的日本晴叶片有328个蛋白上调表达。盐胁迫水平下,两优培九叶片蛋白上调表达量高于日本晴处理,这可能是两优培九耐盐性能优于日本晴处理的原因。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号