首页> 外文会议>World Tribology Congress III 2005 vol.2 >LOW FRICTION IN BOUNDARY LUBRICATION - BY STRUCTURE OR DYNAMICS?
【24h】

LOW FRICTION IN BOUNDARY LUBRICATION - BY STRUCTURE OR DYNAMICS?

机译:边界润滑的摩擦很低-是结构还是动力学?

获取原文
获取原文并翻译 | 示例

摘要

Low friction is an important and desirable attribute for a number of boundary lubricated systems. We ask the question what are the most promising strategies to attain low friction with nanometer thick lubricant films. Is it the structure or the dynamics of the boundary layers, or, maybe both? Using the extended surface forces apparatus we are investigating structural and dynamic effects on friction - in some cases at sub-Angstrom resolution. Results obtained with different molecular systems exhibiting low friction are presented. A water-soluble, PEG containing co-polymer architecture was used to construct a water-based lubrication system. A high-resolution measurement of the compression isotherm revealed film-thickness transitions under confinement that are due to a water-induced restriction of the conformational space of PEG. These findings are in accord with known solution properties of this polymer. The friction is found to be vanishingly small in a dilute aqueous solution of this co-polymer. Using an alternative approach, the active control of static and dynamic friction was demonstrated using sub-nanometer mechanical oscillations across a nanometer thick liquid layer. The dynamic frustration of molecular arrangements is responsible for this effect. Oscillations of just a few Angstrom are sufficient to reduce friction to a small fraction of the unperturbed system. Molecular film-thickness changes were monitored throughout the contact zone and the effect of the oscillations on the molecular dynamics was measured.
机译:对于许多边界润滑系统,低摩擦是重要且理想的属性。我们问一个问题,用纳米厚的润滑膜实现低摩擦的最有前途的策略是什么?是边界层的结构还是动力学,还是两者都有?使用扩展的表面力仪器,我们正在研究结构和动力对摩擦的影响-在某些情况下为亚埃分辨率。呈现了用表现出低摩擦的不同分子系统获得的结果。水溶性,含PEG的共聚物结构用于构建水基润滑系统。压缩等温线的高分辨率测量揭示了在限制条件下的膜厚转变,这是由于水诱导的PEG构象空间限制所致。这些发现与该聚合物的已知溶液性质一致。发现在该共聚物的稀水溶液中摩擦很小。使用另一种方法,通过在纳米厚的液层上进行亚纳米机械振荡,证明了对静摩擦和动摩擦的主动控制。分子排列的动态挫败是造成这种效应的原因。仅几埃的振动就足以将摩擦减小到不受干扰的系统的一小部分。在整个接触区域内监测分子膜厚度的变化,并测量振荡对分子动力学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号