【24h】

Lattice Instabilities of Perovskite Oxides from First Principles

机译:钙钛矿氧化物的晶格不稳定性

获取原文
获取原文并翻译 | 示例

摘要

The theoretical and experimental investigation of the crystal structures and properties of complex oxides presents significant challenges, with corresponding potential rewards both for fundamental science and technology. First-principles density-functional-theory methods have emerged as a valuable tool for obtaining microscopic information about structural energetics and polarization in these systems, with continuing improvements in algorithms and computer hardware leading to a point where important questions can be addressed. This increased access to information can drive the development of a more comprehensive and powerful conceptual framework; such a framework is also very much needed to guide and interpret highly demanding experimental and computational investigations. The perovskites are a large, diverse, and well studied family of oxide materials of fundamental scientific interest and technological value, with virtually the full range of properties exhibited by complex oxides. The crystal structures of the perovskites can be described as distortions of a high-symmetry parent cubic perovskite structure, shown in Fig. 29.1. This structure is highly prone to instabilities, and only a few perovskite oxides have a cubic ground state structure (e.g. BaZrO_3). The structures of many others can be described by atomic displacement patterns corresponding to the "freezing in" of a single unstable normal mode, lowering the symmetry. This idea can be extended to more complicated structures involving the freezing in of several coupled modes (e.g. PbZrO_3). A description in terms of normal modes also provides a direct relationship to physical properties of the perovskites derived from structure and polarization. The lowest frequency modes contribute the most to the response to external perturbations and to the vibrational free energy (which, though anharmonicity, depends on structure), thus dominating the temperature dependence of structure and properties.
机译:对复杂氧化物的晶体结构和性质的理论和实验研究提出了重大挑战,并且对基础科学和技术都有相应的潜在回报。第一性原理密度泛函理论方法已成为获取这些系统中结构能和极化的微观信息的有价值的工具,算法和计算机硬件的不断改进导致可以解决重要问题的观点。信息获取的增加可以推动更全面,更强大的概念框架的发展;这样的框架也非常需要指导和解释要求很高的实验和计算研究。钙钛矿是大型,多样且经过充分研究的氧化物材料家族,具有基本的科学兴趣和技术价值,实际上复合氧化物具有各种性能。钙钛矿的晶体结构可以描述为高对称母立方钙钛矿结构的变形,如图29.1所示。该结构极易发生不稳定性,并且仅少数钙钛矿氧化物具有立方基态结构(例如BaZrO_3)。许多其他结构可以通过原子位移模式来描述,该模式对应于单个不稳定法线模式的“冻结”,从而降低了对称性。这个想法可以扩展到更复杂的结构,其中涉及几种耦合模式(例如PbZrO_3)的冻结。关于正常模式的描述还提供了与源自结构和极化的钙钛矿的物理性质的直接关系。最低频率模式对外部扰动和振动自由能(尽管非谐性取决于结构)的贡献最大,因此决定了结构和特性对温度的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号