首页> 外文会议>Windpower conference exhibition >Optimized Active Aerodynamic Blade Control for Load Alleviation on Large Wind Turbines
【24h】

Optimized Active Aerodynamic Blade Control for Load Alleviation on Large Wind Turbines

机译:优化的主动气动叶片控制,可减轻大型风力发电机的负荷

获取原文

摘要

Wind turbines are large complex dynamically flexible structures that must operate under very turbulent and unpredictable environmental conditions where the efficiency and reliability are highly dependent upon a well designed control strategy. At maximum energy capture capacity (operating region III) several popular control strategies are being investigated to help alleviate loads to prevent damage to the machinery. These include; individual pitch control, collective pitch control, and trailing-edge devices that change the effective camber of the airfoil. In this study the authors investigate the optimal deployment of one type of trailing-edge device, the micro-tabs, in conjunction with collective and individual pitch control to provide effective load alleviation for the NREL Controls Advanced Research Turbine (CART) in Colorado. The performance index maintains maximum power output while minimizing root bending moment during “actual simulated” turbulent wind conditions. The goal is to determine the micro-tab deployment profiles that keep blade root bending moments as close as possible to steady-state wind conditions during operation in a turbulent regime. A MATLAB optimization algorithm is applied as a “wrapper” around a FAST/Simulink wind turbine analysis model. The time-domain simulation results for reduced tip deflections and root bending moments are animated to visualize reduced loads with respect to micro-tab deployment profiles. The results demonstrate up to a potential 70% theoretical upper-bound reduction in root bending moments, for the cases investigated. This may allow the designer to; increase effective rotor size, extend potential life expectancy and reliability, and ultimately reduce the cost-of-energy of future large wind turbine machines.
机译:风力涡轮机是大型复杂的动态柔性结构,必须在非常动荡且不可预测的环境条件下运行,在这些条件下效率和可靠性高度依赖于精心设计的控制策略。在最大的能量捕获能力(工作区域III)下,正在研究几种流行的控制策略,以帮助减轻负载以防止损坏机械。这些包括;单独的俯仰控制,集体俯仰控制和后缘装置,可改变机翼的有效弯度。在这项研究中,作者研究了一种类型的后缘装置(微翼片)的最佳部署,并结合了集体和个人的俯仰控制,以为科罗拉多州的NREL先进控制涡轮机(CART)提供有效的负荷减轻。性能指标可在“实际模拟”湍流风况下保持最大功率输出,同时最大程度地减小根部弯矩。目的是确定在湍流状态下运行期间保持叶片根部弯矩尽可能接近稳态风况的微型翼片展开曲线。 MATLAB优化算法被用作围绕FAST / Simulink风力涡轮机分析模型的“包装器”。减少针尖偏斜和根部弯矩的时域仿真结果具有动画效果,可以可视化显示相对于微型标签展开轮廓减小的负载。结果表明,在所研究的情况下,根部弯矩的理论上限可能降低70%。这可以使设计者能够;增加有效的转子尺寸,延长潜在的预期寿命和可靠性,并最终降低未来大型风力涡轮机的能源成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号