首页> 外文会议>Wavelets and sparsity XVI >Imaging Industry Expectations for Compressed Sensing in MRI
【24h】

Imaging Industry Expectations for Compressed Sensing in MRI

机译:成像行业对MRI压缩感知的期望

获取原文
获取原文并翻译 | 示例

摘要

Compressed sensing requires compressible data, incoherent acquisition and a nonlinear reconstruction algorithm to force creation of a compressible image consistent with the acquired data. MRI images are compressible using various transforms (commonly total variation or wavelets). Incoherent acquisition of MRI data by appropriate selection of pseudo-random or non-Cartesian locations in k-space is straightforward. Increasingly, commercial scanners are sold with enough computing power to enable iterative reconstruction in reasonable times. Therefore integration of compressed sensing into commercial MRI products and clinical practice is beginning. MRI frequently requires the tradeoff of spatial resolution, temporal resolution and volume of spatial coverage to obtain reasonable scan times. Compressed sensing improves scan efficiency and reduces the need for this tradeoff. Benefits to the user will include shorter scans, greater patient comfort, better image quality, more contrast types per patient slot, the enabling of previously impractical applications, and higher throughput. Challenges to vendors include deciding which applications to prioritize, guaranteeing diagnostic image quality, maintaining acceptable usability and workflow, and acquisition and reconstruction algorithm details. Application choice depends on which customer needs the vendor wants to address. The changing healthcare environment is putting cost and productivity pressure on healthcare providers. The improved scan efficiency of compressed sensing can help alleviate some of this pressure. Image quality is strongly influenced by image compressibility and acceleration factor, which must be appropriately limited. Usability and workflow concerns include reconstruction time and user interface friendliness and response. Reconstruction times are limited to about one minute for acceptable workflow. The user interface should be designed to optimize workflow and minimize additional customer training. Algorithm concerns include the decision of which algorithms to implement as well as the problem of optimal setting of adjustable parameters. It will take imaging vendors several years to work through these challenges and provide solutions for a wide range of applications.
机译:压缩传感需要可压缩数据,非相干采集和非线性重建算法,以强制创建与所采集数据一致的可压缩图像。 MRI图像可以使用各种变换(通常是总变化或小波)进行压缩。通过适当选择k空间中的伪随机或非笛卡尔位置来非相干采集MRI数据非常简单。越来越多的商业扫描仪具有足够的计算能力,可以在合理的时间内进行迭代重建。因此,开始将压缩传感技术集成到商业MRI产品和临床实践中。 MRI通常需要权衡空间分辨率,时间分辨率和空间覆盖范围以获得合理的扫描时间。压缩传感提高了扫描效率,并减少了这种折衷的需求。给用户带来的好处将包括扫描时间短,患者舒适度更高,图像质量更好,每个患者插槽的造影剂类型更多,以前不切实际的应用成为可能以及更高的通量。供应商面临的挑战包括确定要优先处理的应用程序,保证诊断图像的质量,保持可接受的可用性和工作流程以及获取和重建算法的细节。应用程序的选择取决于供应商要满足的客户需求。不断变化的医疗环境正在给医疗服务提供者带来成本和生产力压力。压缩感测的提高的扫描效率可以帮助减轻这种压力。图像质量受图像可压缩性和加速因子的强烈影响,必须适当限制它们。可用性和工作流问题包括重建时间以及用户界面的友好性和响应能力。对于可接受的工作流程,重建时间限制为大约一分钟。用户界面应设计为优化工作流程并最大程度地减少额外的客户培训。算法方面的问题包括决定执行哪种算法以及可调参数的最佳设置问题。影像供应商将需要几年的时间来应对这些挑战,并为各种应用提供解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号