首页> 外文会议>Biomedical vibrational spectroscopy 2018: Advances in research and industry >The High Throughput Virtual Slit enables compact, inexpensive Raman spectral imagers
【24h】

The High Throughput Virtual Slit enables compact, inexpensive Raman spectral imagers

机译:高通量虚拟狭缝可实现紧凑,廉价的拉曼光谱成像仪

获取原文
获取原文并翻译 | 示例

摘要

Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments. Raman spectral imaging is increasingly becoming the tool of choice for field-based applications like threat, narcotics and hazmat detection; air, soil and water quality monitoring; material ID and the like. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching routines. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Free space line illumination combined with area scanning imaging, by contrast, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as explosives or narcotics trace particle detection in fingerprints, for example. Spectral imaging is also preferred over conventional spectroscopy for forensics applications, where it preserves a unique mapping relationship between a familiar RGB image and an information-rich but less intuitive spectral image. This renders the technology far more approachable for nontechnical users. Spectrometer design requires a tradeoff between light-gathering power, spectral resolution, and instrument size. A wide entrance slit and large instrument aperture maximize the number of photons that can be collected from the sample, but decrease the spectral resolution. A long focal length increases the resolution, but requires a larger instrument, with larger optics to accommodate the larger pupil. The High Throughput Virtual Slit is an innovative optical design that mitigates these tradeoffs. By manipulating the pupil in collimated space, we obtain spectral resolution approximately 3X greater than in conventional designs at an equivalent slit width and with no sacrifice of entrance aperture. Alternatively, we can reduce the instrument dimensions by an equivalent amount to produce extremely compact instruments with the resolution of much larger Raman spectrometers. In principle, a 3X reduction in focal length translates to a 9X reduction in optical surface area and a 27X reduction in overall instrument volume, so we can use much smaller components inside a much smaller housing to build these instruments, achieving very low unit costs while retaining the analytical power of larger devices. We also make more efficient use of sensor real estate and available laser power with a line illumination/collection design that increases total photon flux while reducing the average intensity. Our approach takes full advantage of the high powers available from modern diode laser arrays. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.
机译:拉曼光谱成像越来越成为威胁,麻醉品和危险品检测等基于现场应用的选择工具;空气,土壤和水质监测;和材料ID。常规的光纤耦合点源拉曼光谱仪可有效询问较小的样品区域,并通过光谱库匹配来识别大量样品。但是,这些设备在宏观区域上的映射非常慢。另外,由收集合并光谱的仪器执行的空间平均,特别是与轨道光栅扫描结合使用时,往往会稀释混合物中痕量粒子的光谱。我们的设计采用自由空间线照明和区域成像相结合,揭示了异质混合物的光谱和空间含量。此方法非常适合诸如指纹中的爆炸物检测和麻醉品痕量颗粒检测之类的应用。获得专利的High Throughput Virtual Slit1是一种创新的光学设计,可实现紧凑,廉价的手持式拉曼光谱成像仪。与相同尺寸的传统设计相比,基于HTVS的仪器可实现更高的光谱分辨率。或者,它们可用于构建分辨率与大型光谱仪相当的仪器,但尺寸,重量和单位成本要小得多,同时又能保持高灵敏度。当与激光线成像结合使用时,该设计消除了样品的光漂白和有害的光化学反应,同时大大提高了绘图速度,同时具有很高的选择性和灵敏度。我们将介绍光谱图像数据并讨论通过启用HTVS的低成本仪器实现的应用。拉曼光谱成像越来越成为威胁,麻醉品和危险品检测等基于现场应用的选择工具;空气,土壤和水质监测;材料ID等。常规的光纤耦合点源拉曼光谱仪可有效询问较小的样品区域,并通过光谱库匹配程序识别大量样品。但是,这些设备在宏观区域上的映射非常慢。另外,由收集合并光谱的仪器执行的空间平均,特别是与轨道光栅扫描结合使用时,往往会稀释混合物中痕量粒子的光谱。相反,自由空间线照明与区域扫描成像相结合,揭示了异质混合物的光谱和空间含量。例如,此方法非常适用于诸如指纹中的炸药或麻醉品痕量颗粒检测之类的应用。对于法医应用而言,光谱成像也比常规光谱学更可取,因为光谱成像保留了熟悉的RGB图像和信息丰富但不那么直观的光谱图像之间的唯一映射关系。这使得该技术对于非技术用户来说更加容易上手。光谱仪的设计需要在聚光能力,光谱分辨率和仪器尺寸之间进行权衡。宽的入口狭缝和较大的仪器孔径可最大化从样品中收集的光子数量,但会降低光谱分辨率。较长的焦距可提高分辨率,但需要使用更大的仪器,并需要更大的光学元件才能容纳更大的瞳孔。高吞吐量虚拟狭缝是一种创新的光学设计,可减轻这些折衷。通过在准直空间中操纵光瞳,我们在等效缝隙宽度下获得的光谱分辨率比传统设计高约3倍,并且不会牺牲入射孔。另外,我们可以将仪器的尺寸减小等效的量,以生产具有非常大的拉曼光谱仪分辨率的极其紧凑的仪器。原则上,焦距减少3倍可将光学表面积减少9倍,而仪器总体积则减少27倍,因此我们可以在更小巧的外壳内使用更小的组件来制造这些仪器,从而实现极低的单位成本,保留较大设备的分析能力。我们还通过线照明/收集设计更有效地利用传感器的空间和可用的激光功率,该设计增加了总光子通量,同时降低了平均强度。我们的方法充分利用了现代二极管激光器阵列可提供的高功率。当与激光线成像结合使用时,该设计消除了样品的光漂白和有害的光化学反应,同时大大提高了绘图速度,同时具有很高的选择性和灵敏度。我们将介绍光谱图像数据并讨论通过启用HTVS的低成本仪器实现的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号