首页> 外文会议>UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II >In-space observatory testing and ground-based integrated modeling for system verification
【24h】

In-space observatory testing and ground-based integrated modeling for system verification

机译:用于系统验证的太空天文台测试和地面集成模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

As envisioned space-based telescopes, observatories, and constellations of sensors grow in size and complexity, the ability to perform complete ground verification becomes increasingly difficult or impossible. Integrated system modeling offers one bridge in analyzing the expected optical performance and metrology of extended platforms in space to an accuracy exceeding the optical testing that can be performed in 1-g. In addition, some aspects of the final integration and system performance testing will eventually progress to on-orbit operations in the not-to-distant future as the infrastructure for lunar and Mars manned exploration proceeds. Specifically, the possibility of an Earth-moon L1 Gateway or a similar "shipyard" in space opens up the potential for some final optical characterizations being performed in space while additional human or robotically assisted alignments and integrations can be performed prior to final deployment to distant operational destinations such as at the Earth-Sun L2. Programs like Laser Interferometer Space Antenna (LISA) and Terrestrial Planet Finder (TPF) are examples of missions where sole reliance on ground optical testing will be extremely difficult, impossible, or inconclusive. Spitzer is a recent example where modeling was a key component of predicting temperature environment and corresponding performance. The future will require a greater reliance on modeling and, where warranted, optical testing and final alignment utilizing on-orbit test facilities. In fact, the case can be made that system modeling will need to be embraced more strongly if space-based assembly and test are to be realized. The necessary analytical tools, verification ground testbeds, and confirming flight experiments are crucial along with the planning that will take full advantage of the flexibility of final system verification at a Gateway prior to a low energy transfer to the observatory's final deployed operating orbit.
机译:随着设想的天基望远镜,天文台和传感器群的大小和复杂性的增长,执行完整的地面验证的能力变得越来越困难或不可能。集成系统建模为分析太空中扩展平台的预期光学性能和计量学提供了一座桥梁,其准确性超过了可以在1-g中执行的光学测试。此外,随着月球和火星载人探索基础设施的发展,最终集成和系统性能测试的某些方面将最终在不久的将来发展为在轨操作。具体而言,在地球上实现月球L1网关或类似的“造船厂”的可能性为在太空中进行某些最终光学表征打开了可能,而在最终部署到远方之前可以进行其他人为或机器人辅助的对准和整合操作目标,例如Earth-Sun L2。诸如激光干涉仪空间天线(LISA)和地球行星搜索器(TPF)之类的程序就是这样的任务示例,其中完全依赖地面光学测试将极为困难,不可能或没有结果。 Spitzer是一个最近的例子,其中建模是预测温度环境和相应性能的关键组成部分。未来将需要更多地依赖建模,以及在必要时依靠在轨测试设施进行光学测试和最终对准的依赖。实际上,如果要实现基于空间的组装和测试,可能需要更加强烈地接受系统建模。必要的分析工具,验证地面试验台和确认飞行实验与计划至关重要,这些计划将充分利用网关在低能量转移到天文台最终部署的运行轨道之前进行最终系统验证的灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号