首页> 外文会议>URSI General Assembly and Scientific Symposium >D-region HF absorption models incorporating real-time riometer measurements
【24h】

D-region HF absorption models incorporating real-time riometer measurements

机译:包含实时测距仪测量的D区HF吸收模型

获取原文

摘要

Absorption of HF (3–30 MHz) radio waves is largely determined by the electron density in the ionospheric D region (50–90 km altitude). During solar proton events (SPE), when the flux of >10 MeV solar protons exceeds 10 cm s sr, the D region ionization may be significantly enhanced at high latitudes where geomagnetic shielding is weaker. This results in polar cap absorption (PCA) events which can cause HF communications outages lasting several days. Models of PCA events are being improved to provide accurate real-time and short-term forecast models of HF absorption for use by HF radio users such as aircraft operating on trans-polar routes. The models are based on the D-region Absorption Prediction model (D-RAP) from the US Space Weather Prediction Service [1, 2] which predicts absorption from real-time measurements of solar X-ray and integral proton flux at one of the Geostationary Operational Environmental Satellites (GOES). Protons with energy below a cut-off energy E at a given invariant latitude — a function of geomagnetic indices K and D [3] — lack the rigidity (momentum per unit charge) required to overcome geomagnetic shielding, whilst protons with energy less than thresholds E and E for night and daytime ionospheres respectively, fail to penetrate down to the D-region. Coefficients of the D-RAP model were based on physical modelling and absorption measurements from a single riometer in Thule, Greenland [3] which measures cosmic noise absorption at 30 MHz. The accuracy of the model was validated for 11 SPEs at Thule by Sauer and Wilkinson [2] and for five further riometers in Canada and Finland by Akmaev et al. [4] who suggested possible errors in the location of the rigidity cut-off at high geomagnetic latitudes. In this paper we extend validation of D-RAP to measurements from 13 riometers in th- Canadian NORSTAR array and a riometer in Kilpisjärvi, Finland for 93 solar proton events (SPE) spanning the whole of solar cycle 23 (1996–2008). To improve model performance, coefficients are optimized using a non-linear least-squares fit to minimize the root-mean-squared error (RMSE) of the absorption estimate. Using optimized coefficients the RMSE reduces from 0.78 dB to 0.72 dB (using all 14 riometers) or from 0.82 dB to 0.53 dB taking only the single highest latitude riometer, Taloyoak (64.5°N, 93.6°W). By introducing linear terms characterizing the Magnetic Local Time (MLT) dependence, the RMSE may be further reduced to 0.66 dB (all riometers). The inclusion of further linear terms proportional to the hardness of the proton energy spectrum and on solar-zenith angle yielded no significant improvement to the RMSE. The benefits of two modifications to D-RAP suggested by Neal et al. [5] based on Polar Operational Environmental Satellite (POES) measurements — a 1–2° correction in the rigidity cut-off invariant latitude and a 3-hour time lag in the K index used in its determination — will also be presented. A short-term forecast capability may be implemented by measuring proton flux at the Advanced Composition Explorer satellite (ACE) located at the L1 libration point which provides 25–70 minute forewarning of proton flux changes (depending on solar wind velocity). An optimized model using ACE integral proton flux measurements (time-shifted to Earth's location) instead of D-RAP reduces the RMSE from 0.57 dB to 0.47 dB (Taloyoak riometer) and from 0.69 dB to 0.64 dB (all riometers). The nowcast accuracy of the PCA model may be improved by finding model parameters coefficients using a weighted least-squares fit, with higher weights assigned in the most recent 30-minute period of riometer measurements. An example of this technique is presented for the 6-day SPE following the particula
机译:HF(3–30 MHz)无线电波的吸收很大程度上取决于电离层D区(海拔50–90 km)中的电子密度。在太阳质子事件(SPE)期间,> 10 MeV太阳质子的通量超过10 cm s sr时,在地磁屏蔽较弱的高纬度地区,D区电离作用可能会明显增强。这导致极性电容吸收(PCA)事件,这可能导致HF通信中断持续数天。 PCA事件的模型正在改进中,以提供HF吸收的准确的实时和短期预测模型,供HF无线电用户(如在跨极航线上运行的飞机)使用。这些模型基于美国太空天气预测服务[1,2]的D区域吸收预测模型(D-RAP),该模型通过实时测量太阳X射线和某一位置处的质子通量来预测吸收。对地静止业务环境卫星(GOES)。在给定的恒定纬度下,能量低于截止能量E的质子-地磁指数K和D的函数[3]-缺乏克服地磁屏蔽所需的刚性(单位电荷动量),而质子的能量小于阈值分别用于夜间和白天电离层的E和E无法穿透到D区域。 D-RAP模型的系数基于物理模型和格陵兰岛Thule [3]的单个测距仪的吸收测量,该测量仪测量30 MHz的宇宙噪声吸收。 Sauer和Wilkinson [2]在Thule验证了11种SPE的模型的准确性,而Akmaev等在加拿大和芬兰验证了5种测距仪的模型准确性。 [4]谁提出了在高地磁纬度的刚性截止位置可能的错误。在本文中,我们将D-RAP的验证范围扩展到加拿大NORSTAR阵列中的13 riometers和芬兰Kilpisjärvi的riometer上针对整个太阳周期23(1996-2008)的93个太阳质子事件(SPE)的测量。为了提高模型性能,使用非线性最小二乘法拟合来优化系数,以最小化吸收估计值的均方根误差(RMSE)。使用优化的系数,仅采用单个最高纬度测距仪Taloyoak(64.5°N,93.6°W),RMSE将从0.78 dB降低至0.72 dB(使用所有14 riometers)或从0.82 dB降低至0.53 dB。通过引入表征磁本地时间(MLT)依赖性的线性项,RMSE可以进一步降低到0.66 dB(所有riometers)。包含与质子能谱的硬度成正比且与太阳天顶角成比例的其他线性项,均方根误差(RMSE)没有明显改善。 Neal等人建议对D-RAP进行两次修饰的好处。 [5]基于极地操作环境卫星(POES)的测量结果-刚度截止不变纬度的1-2°校正和确定中使用的K指数的3小时时滞-也将被提出。可以通过测量位于L1解放点的Advanced Composition Explorer卫星(ACE)上的质子通量来实现短期预测能力,该卫星可以提供25-70分钟的预警质子通量变化(取决于太阳风速)。使用ACE积分质子通量测量(时移到地球位置)而不是D-RAP的优化模型将RMSE从0.57 dB降低到0.47 dB(Taloyoak riometer),从0.69 dB降低到0.64 dB(所有riometer)。可以通过使用加权最小二乘拟合找到模型参数系数来提高PCA模型的临近预报精度,并在最近30分钟的测量仪测量期间分配更高的权重。以下是针对6天SPE的这种技术的示例

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号