首页> 外文会议>Ultrasonic Imaging and Signal Processing; Progress in Biomedical Optics and Imaging; vol.7 no.33 >Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging
【24h】

Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging

机译:用于基于3D导管的实时超声成像的多通道前端集成电路的波束成形和硬件设计

获取原文
获取原文并翻译 | 示例

摘要

We are working on integrating front-end electronics with the ultrasound transducer array for real-time 3D ultrasound imaging systems. We achieve this integration by flip-chip bonding a two-dimensional transducer array to an integrated circuit (IC) that comprises the front-end electronics. The front-end IC includes preamplifiers, multiplexers, and pulsers. We recently demonstrated a catheter-based real-time ultrasound imaging system based on a 16x16-element capacitive micromachined ultrasonic transducer (CMUT) array. The CMUT array is flip-chip bonded to a front-end IC that includes a pulser and preamplifier for each element of the array. To simplify the back-end processing and signal routing on the IC for this initial implementation, only a single array element is active at a time (classic synthetic aperture (CSA) imaging). Compared with classic phased array imaging (CPA), where multiple elements are used on transmit and receive, CSA imaging has reduced signal-to-noise ratio and prominent grating lobes. In this work, we evaluate three array designs for the next generation front-end IC. The designs assume there are 16 receive channels and that numerous transmit pulsers are provided by the IC. The designs presented are: plus-transmit x-receive, boundary-transmit x-receive with no common elements, and full-transmit x-receive with no common elements. Each design is compared with CSA and CPA imaging. We choose to implement an IC for the full-transmit x-receive with no common elements (FT-XR-NC) design for our next-generation catheter-based imaging system.
机译:我们正在努力将前端电子设备与超声换能器阵列集成在一起,以用于实时3D超声成像系统。我们通过将二维换能器阵列倒装芯片连接到包含前端电子设备的集成电路(IC)来实现这种集成。前端IC包括前置放大器,多路复用器和脉冲发生器。我们最近展示了一种基于导管的实时超声成像系统,该系统基于16x16元素电容式微加工超声换能器(CMUT)阵列。 CMUT阵列倒装芯片连接到前端IC,该前端IC包括用于该阵列每个元件的脉冲发生器和前置放大器。为了简化此初始实现的IC上的后端处理和信号路由,一次仅激活一个阵列元素(经典合成孔径(CSA)成像)。与经典相控阵成像(CPA)相比,在发射和接收中使用多个元素,CSA成像具有降低的信噪比和显着的光栅波瓣。在这项工作中,我们评估了下一代前端IC的三种阵列设计。该设计假设有16个接收通道,并且IC提供了许多发射脉冲发生器。呈现的设计为:无公共元素的正发送x接收,无公共元素的边界传输x接收和无公共元素的全传输x接收。将每种设计与CSA和CPA成像进行比较。我们选择为下一代基于导管的成像系统实现一种无需通用元件的全发射x接收IC(FT-XR-NC)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号