首页> 外文会议>International Conference on Transparent Optical Networks;ICTON '09 >Modelling the response of whispering-gallery-mode optical resonators for biosensing applications
【24h】

Modelling the response of whispering-gallery-mode optical resonators for biosensing applications

机译:为生物传感应用建模耳语画廊模式光谐振器的响应

获取原文

摘要

In recent years, sharp photonic resonances of dielectric microspheres, so-called whispering gallery modes (WGMs), have emerged as powerful transducer for sensing applications. The long photon lifetime of the modes together with the small surface area of the microresonator is promising for their use as sensitive probes of changes in the surrounding medium. In this work we present a theoretical analysis of the response of WGMs for biosensing applications, studied numerically in microcylinders and semi-analytically in microspheres. In both cases, we consider a layout where WGMs are excited via frustrated total internal reflection from a planar substrate, as reported in recent experiments. The effect of single and multiple particles is calculated, simulating biological analytes of different sizes and polarizabilities attached to the microresonator surface. For microcylinders, cylinder-shaped particle are considered, to retain a 2D numerical problem. Besides WGM frequency shifts, we find that also broadenings and splittings (from lifted rotational symmetry) appear due to particles attachment and/or the vicinity to the planar substrate. In particular, for a single analyte, both particle size and refractive index can be determined from the WGM broadening and shift, opening the perspective to a new biosensing modality. In microspheres, a perturbation method is used to model shifts and splittings of WGMs in the presence of point-like particles and global shape perturbations. Due to the large azimuthal degeneracy of the modes without perturbation, the resulting mode spectrum is rich and offers a fingerprint of the perturbation.
机译:近年来,介电微球的尖锐光子共振,即所谓的回音壁模式(WGM),已成为传感应用的强大换能器。这些模式的长光子寿命以及微谐振器的小表面积有望将其用作周围介质变化的敏感探针。在这项工作中,我们对WGMs在生物传感应用中的响应进行了理论分析,在微圆柱体中进行了数值研究,在微球体中进行了半解析研究。在这两种情况下,正如最近的实验所报道的那样,我们考虑了一种布局,其中WGM通过平面基板的受阻全内反射来激发。计算单个和多个粒子的效果,模拟附着在微谐振器表面的不同大小和极化率的生物分析物。对于微缸,考虑保留圆柱形状的粒子,以保留二维数值问题。除了WGM频移,我们还发现由于颗粒附着和/或与平面基板的邻近,还会出现展宽和裂痕(由于旋转对称性升高)。特别是,对于单个分析物,可以通过WGM加宽和移动来确定粒径和折射率,从而为新的生物传感方式打开了视野。在微球中,在存在点状颗粒和整体形状扰动的情况下,使用扰动方法来模拟WGM的移动和分裂。由于没有扰动的模态的大方位角简并性,所得到的模态频谱很丰富,并提供了扰动的指纹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号