【24h】

PROPERTY OF ULTRAFINE GRAINED ENGINEERING MATERIALS RELATED TO HIGH MAGNETIC FIELDS

机译:与高磁场有关的超细晶粒工程材料的性能

获取原文
获取原文并翻译 | 示例

摘要

Deformation is used to fabricate various materials for high field magnets. The key materials possess ultrafine microstructure and unique combination of mechanical and physical properties. The matrix of the materials discussed in this paper has face-centered cubic (fcc) structure and therefore no ductile-to-brittle transition temperature is observed. The properties of these magnet materials are related to the microstructure. A number of Cu matrix conductors have strength levels close to their theoretical strength because the size of the grains reaches nanometer scales. However, the electrical resistance is also increased because of the refined microstructure. The application of these materials requires detailed consideration of the mechanisms of strengthening and electron transport which are operative in materials with ultra fine scale microstructures. In addition, consideration must be given to the fatigue endurance of those composites. The second type fcc matrix materials are low temperature superconductor composites. The critical current of Nb3Sn superconductors is related to the mechanical strain to which the materials are exposed. To achieve high strength, refinement of microstructure is also required. However, ultrafine structure may result in deterioration of transport properties. The third type fcc matrix materials are super alloys. This paper mainly summarizes our studies of the cryogenic properties of a Co-Ni-Cr alloy. The refined structure in this alloy provides a strength level as high as 2500 MPa. This presentation will address the correlation between the properties (both mechanical and transport) and microstructure of those fcc matrix magnet materials.
机译:变形用于制造用于高磁场磁体的各种材料。关键材料具有超细的微观结构以及机械和物理性能的独特结合。本文讨论的材料基质具有面心立方(fcc)结构,因此未观察到韧性到脆性的转变温度。这些磁体材料的性能与微观结构有关。许多Cu基体导体的强度水平接近其理论强度,因为晶粒尺寸达到了纳米级。然而,由于精细的微观结构,电阻也增加了。这些材料的应用需要详细考虑在具有超精细尺度微结构的材料中有效的增强和电子传输机理。另外,必须考虑这些复合材料的疲劳强度。第二种fcc基体材料是低温超导体复合材料。 Nb3Sn超导体的临界电流与材料所承受的机械应变有关。为了获得高强度,还需要微结构的细化。但是,超细结构可能导致运输性能下降。第三类fcc基质材料是超级合金。本文主要概述了我们对Co-Ni-Cr合金的低温性能的研究。这种合金中的精细组织提供了高达2500 MPa的强度水平。本演讲将探讨这些fcc基质磁体材料的性能(机械性能和运输性能)与微观结构之间的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号