首页> 外文会议>The Sixth Asian conference on multibody dynamics >A High Performance Computing approach to the simulation of dense particulate flow using Smoothed Particle Hydrodynamics and Discrete Element Method
【24h】

A High Performance Computing approach to the simulation of dense particulate flow using Smoothed Particle Hydrodynamics and Discrete Element Method

机译:一种使用平滑粒子流体动力学和离散元方法模拟稠密颗粒流动的高性能计算方法

获取原文
获取原文并翻译 | 示例

摘要

This contribution concentrates on the direct numerical simulation of dense particulate flows. The approach adopted solves the Navier-Stokes equations in conjunction with the Newton-Euler equations of motion associated with the dynamics of the rigid bodies; i.e., the motion of the embedded rigid particles. The simulation of the fluid flow and Fluid Solid Interaction (FSI) phenomena rely on the Smoothed Particle Hydrodynamics (SPH) method. The rigid-body to rigid-body interactions are captured using a Discrete Element Method (DEM) technique, which draws on a visco-elastic model for the mutual frictional-contact interaction. The choice of SPH for the current problem is justified on two grounds.First, it is a Lagrangian method that allows a relatively straightforward modeling of the moving boundaries as well as free surface flow.Second, it is suited for parallel implementation on inexpensive hardware accelerators; i.e., Graphics Processing Unit (GPU) cards, thus allowing for the simulation of complex flow scenarios.While the flow simulation using basic SPH models is generally second order accurate, the pressure field may still exhibits large oscillation.One of the most straightforward and computationally inexpensive solution to this problem is the density re-initialization technique.Additionally, to prevent particles interpenetration and improve the incompressibility of the flow field, the XSPH correction is adopted herein. The accuracy of the simulation engine is benchmarked against a transient Poiseuille flow for which an analytical solution is available. The Lagrangian, particle-based, modeling of the fluid allows a fairly straightforward FSI simulation via the spherical decomposition of the rigid particles surface. This technique is used in the simulation and validation of lateral migration of cylindrical objects in Poiseuille flow, which is associated with the Segre-Silberberg effect.Preliminary results show the capability of the aforementioned algorithm to simulate the dilute particulate flow in an arbitrarily shaped medium, a scenario relevant in microbiology related applications.Despite being relatively straightforward to implement for the analysis of both internal as well as free surface flows, a na飗e SPH simulation does not exhibit the efficiency required for the 3D simulation of real-life fluid flow problems. To address this issue, the software implementation of the proposed method uses a scalable spatial subdivision of the flow field that allows for an efficient 3D simulation of the particulate flow.Preliminary numerical experiments demonstrate linear time scaling with respect to the problem size; i.e., number of fluid discretization particles. The overall simulation algorithm was implemented in parallel and on the GPU to simulate the fluid flow over a granular bed. The resulting simulation capability will be instrumental in simulating real-life problems in bioenginering and polymer science.
机译:该贡献集中于稠密颗粒流的直接数值模拟。所采用的方法结合了刚体动力学来求解Navier-Stokes方程和Newton-Euler运动方程。即嵌入的刚性粒子的运动。流体流动和流体固相相互作用(FSI)现象的模拟依赖于平滑粒子流体动力学(SPH)方法。刚体到刚体的相互作用是使用离散元方法(DEM)技术捕获的,该技术借鉴了用于相互摩擦接触相互作用的粘弹性模型。选择SPH解决当前问题有两个理由:首先,这是一种拉格朗日方法,可以相对简单地对运动边界和自由表面流进行建模;其次,它适合在廉价的硬件加速器上并行实施;例如,图形处理单元(GPU)卡,因此可以模拟复杂的流动情况。虽然使用基本SPH模型进行的流动模拟通常是二阶精确的,但压力场可能仍会表现出较大的振荡。为了解决这个问题,廉价的解决方案是密度重新初始化技术。此外,为了防止粒子相互渗透并改善流场的不可压缩性,本文采用XSPH校正。仿真引擎的精度以瞬态Poiseuille流量为基准,该流量可以使用解析解决方案。拉格朗日基于粒子的流体建模可以通过刚性粒子表面的球形分解实现相当简单的FSI模拟。这项技术用于模拟和验证Poiseuille流动中圆柱形物体的横向迁移,这与Segre-Silberberg效应有关。初步结果表明,上述算法能够模拟任意形状介质中的稀颗粒流,尽管与内部和自由表面流的分析相对容易实施,但自然的SPH模拟并没有表现出对真实流体流动问题进行3D模拟所需的效率。为了解决这个问题,所提出方法的软件实现使用了流场的可扩展空间细分,可以对颗粒流进行有效的3D模拟。初步的数值实验证明了相对于问题大小的线性时间缩放。即,流体离散颗粒的数量。总体模拟算法是在GPU上并行执行的,用于模拟颗粒床上的流体流动。由此产生的仿真功能将有助于仿真生物工程和高分子科学中的现实问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号