【24h】

Photons are fluctuations of a random (zeropoint) radiation filling the whole space

机译:光子是填充整个空间的随机(零点)辐射的波动

获取原文
获取原文并翻译 | 示例

摘要

I assume that everywhere in space there is a real random electromagnetic radiation, or zeropoint field (ZPF), which looks similar for all inertial observers, so that the stochastic properties of the field should be Lorentz invariant. This fixes the spectrum except for a single adjustable parameter measuring the scale, which is identified with Planck's constant, so making the ZPF identical to the quantum electromagnetic vacuum. Photons are just fluctuations of the random field or, equivalently, wavepackets in the form of needles of radiation superimposed to the ZPF. Two photons are "classically correlated" if the correlation involves just the intensity above the average energy of the ZPF, but they are "entangled" if the ZP fields in the neighbourhood of the photons are also correlated. These assumptions may explain all quantum optical phenomena involving radiation and macroscopic bodies, provided the latter may be treated as classical. That is, we have an interpretation of quantization for light but not for matter. Detection of photons involves subtracting the ZPF, which cannot be made without a fundamental uncertainty. This explains why photon counters cannot be manufactured with 100% efficiency and no noise (dark rate), which prevents the violation of a genuine Bell inequality (this is the so-called detection loophole). The theory thus obtained agrees very closely with standard quantum optics if this is formulated in the Wigner representation.
机译:我假设在太空中的每个地方都有一个真正的随机电磁辐射或零点场(ZPF),对于所有惯性观测器来说,它看起来都相似,因此该场的随机性质应该是洛仑兹不变的。这固定了频谱,除了测量比例的单个可调参数外,该参数由普朗克常数确定,因此使ZPF与量子电磁真空相同。光子仅仅是随机场的波动,或者等效地,是叠加在ZPF上的辐射针形式的波包。如果相关仅涉及高于ZPF平均能量的强度,则两个光子“经典相关”,但是如果光子附近的ZP场也相关,则两个光子“纠缠”。这些假设可以解释所有涉及辐射和宏观物体的量子光学现象,但前提是后者可以视为经典物体。也就是说,我们对光而不是物质进行了量化解释。光子的检测涉及减去ZPF,这在没有基本不确定性的情况下是无法实现的。这就解释了为什么不能以100%的效率和无噪声(暗速率)制造光子计数器的原因,这可以防止违反真正的贝尔不等式(这就是所谓的检测漏洞)。如果以维格纳表示法表示的话,由此获得的理论与标准量子光学非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

联系方式:18141920177 (微信同号)

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号