【24h】

Thermogravimetric study of hydrogen uptake and desorption in titanium alloys

机译:钛合金中氢吸收和解吸的热重研究

获取原文
获取原文并翻译 | 示例

摘要

Over recent years, titanium has been increasingly used in several industrial fields, such as biomedical implants, structural material in aeronautics, production of energy, chemicals, military applications, luxury products… thanks to a good resistance to corrosion -even in severe conditions- and a low density leading to high specific strength.Enlargement of the use of titanium and its alloys have highlighted new industrial issues and new technological challenges, especially given the sensitivity of titanium to the diffusion of interstitial light elements, which can cause hardening and embrittlement of the material, even at low contents.rnAt room temperature, pure titanium shows an alpha hexagonal close-packed crystal structure which transforms into a beta body-centered cubic structure above 882℃. This transition temperature can be increased or lowered with alloying elements. As an alloying element, hydrogen can be described as a beta-promoting element, meaning that hydrogen solubility is higher in beta than in alpha phase and the alpha-beta transus temperature decreases as the hydrogen level increases.rnBelow 100°C, hydrogen absorption and diffusion in titanium is considered as negligible and has no significant influence on the behaviour of the material. Beyond this temperature, hydrogen absorption can happen and depends on many parameters: temperature, pressure, surface strains and dislocations, properties of the passive layer.rnThis study deals with commercially pure titanium, especially the Ti40 grade, and the determination of the kinetics of hydrogen absorption, diffusion and desorption between 200 and 350°C. Hydrogen uptake has been followed by thermogravimetric analysis (TGA) with different atmospheres and hydrogen partial pressures, and the formation of titanium hydrides has been verified by XRD and XPS analyses. SEM has also been performed to characterize hydraded titanium microstructure.
机译:近年来,钛由于具有良好的耐腐蚀性能(即使在严酷的条件下),并且在许多工业领域中也得到越来越多的应用,例如生物医学植入物,航空结构材料,能源生产,化工,军事应用,奢侈品……钛及其合金的广泛使用突出了新的工业问题和新的技术挑战,特别是考虑到钛对间隙性轻元素扩散的敏感性,这会导致钛合金的硬化和脆化。在室温下,纯钛呈现出α六角形密堆积晶体结构,在882℃以上会转变为以β体为中心的立方结构。过渡温度可以用合金元素增加或降低。作为合金元素,氢可被描述为促进β的元素,这意味着β中的氢溶解度高于α相,并且氢的含量越高,α-β的转变温度就降低.rn在100°C以下,氢吸收和钛中的扩散被认为是微不足道的,并且对材料的性能没有重大影响。超过此温度,会发生氢吸收,并取决于许多参数:温度,压力,表面应变和位错,钝化层的性能。这项研究涉及商业纯钛,尤其是Ti40级钛,以及氢动力学的测定吸收,扩散和解吸在200至350°C之间。在不同的气氛和氢气分压下,通过热重分析(TGA)跟踪了氢气的吸收,并通过XRD和XPS分析验证了氢化钛的形成。还已经进行了SEM以表征水合钛的微观结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号