首页> 外文会议>Proceedings of the 43rd International Pyrotechnics Society Seminar >Characterizing the Material Structure and Deflagration Profile of Additive‐Manufactured Energetic Materials
【24h】

Characterizing the Material Structure and Deflagration Profile of Additive‐Manufactured Energetic Materials

机译:表征添加剂制造的含能材料的材料结构和爆燃曲线

获取原文
获取原文并翻译 | 示例

摘要

Commonly used rocket propellants such as Ammonium Perchlorate Composite Propellant (APCP) are castinto molds with varying internal geometries and set once the liquid binder polymerizes. Since Solid RocketMotors (SRMs) are ignited internally, the amount of exposed internal surface area to the flame boundarydetermines the burn rate and thrust profile of the motor. The mold design in which the SRM is cast intois thus critically important to the performance of the motor. This relationship between surface area anddeflagration rate is paramount to the performance of all types of explosive materials.However, traditional manufacturing techniques for low explosive materials are rudimentary and leavelittle design flexibility. Cross‐sectional grain geometry is constant throughout the material because themold plug must be removable. In contrast, additive manufacturing (3D‐printing) technologies allow thedesign and fabrication of functionally‐graded energetic materials because no mold is required, andmaterials can be careful designed with internal and external geometries previously unattainable throughconventional manufacturing methods.This research was conducted at the Colorado School of Mines to demonstrate the manipulation ofenergetic material deflagration via 3D‐printing with advanced grain geometry. Liquid Deposition Modeling(LDM) 3D‐printing technologies were applied to energetic materials, and the effects of degree of binderpolymerization and material void fraction are compared to experimental deflagration rate data. Thisresearch investigates the relationship between structural qualities of 3D‐printed energetic materials andtheir deflagration rate. These studies further validate the application of additive manufacturingtechnologies to functionally‐graded energetic materials.
机译:将常用的火箭推进剂(如高氯酸铵复合推进剂(APCP))浇铸成具有不同内部几何形状的模具,并在液态粘合剂聚合后凝固。由于固态火箭\ r \ nMotors(SRM)在内部被点燃,因此暴露于火焰边界的内表面积的数量决定了电机的燃烧率和推力曲线。因此,将SRM浇铸到其中的模具设计对电动机的性能至关重要。表面积与爆燃率之间的关系对于所有类型的爆炸物的性能都至关重要。\ r \ n但是,用于低爆炸物的传统制造技术是基本的,并且几乎没有设计灵活性。在整个材料中,横截面的晶粒几何形状是恒定的,因为模具插头必须是可拆卸的。相比之下,增材制造(3D打印)技术允许设计和制造功能渐变的高能材料,因为不需要模具,并且可以谨慎设计材料,而内部和外部几何形状以前是无法通过实现的\ r \ n常规制造方法。\ r \ n这项研究是在科罗拉多矿业大学进行的,目的是演示通过具有先进晶粒几何形状的3D打印来处理\ r \高能材料爆燃。将液体沉积建模\ r \ n(LDM)3D打印技术应用于高能材料,并将粘合剂\ r \ n聚合度和材料空隙率的影响与实验爆燃率数据进行比较。这项研究调查了3D打印的高能材料的结构质量与爆燃率之间的关系。这些研究进一步验证了增材制造技术在功能梯度含能材料中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号