首页> 外文会议>Texture and anisotropy of polycrystals >Calculation of Effective Elastic Constants for Polycrystalline Materials
【24h】

Calculation of Effective Elastic Constants for Polycrystalline Materials

机译:多晶材料的有效弹性常数的计算

获取原文
获取原文并翻译 | 示例

摘要

The average elastic properties of a polycrystalline material do not only depend on the anisotropic elastic properties of the individual grains, but also on the distribution of crystal orientations (represented by an orientation distribution function (ODF)), on the mutual misorientation of neighbouring grains, on the size of the grains and on their shape. We use a previously developed cluster model to calculate the influence of texture, an-isotropy, orientation correlation and grain shape, with the latter being confined to a few idealized cases. The model consists of several hundred uniformly shaped and equally sized grains. The individual orientations of the grains are picked at random by using a random generator or an appropriate modification when simulating a given ODF. To incorporate the correlation of the grain orientation we use a method already reported elsewhere. The displacement that occurs within the grains as one subjects the cluster to external forces is expanded in terms of grain referenced basis functions. The expansion coefficients are determined by requiring these expansions and the associated stresses to match continuously at the grain boundaries. Once the displacement is known, one can calculate the stresses and strains everywhere and form their spatial averages. The effective elastic constants are defined as interconnecting these averages.rnIt turns out that for a given ODF (e.g. for a random ODF) the effective elastic constants may vary within the entire range defined by the familiar Voigt and Reuss value if one assumes sizably different misorientation distributions functions (MODF). Our model is also suited for studying the influence of the grain shape on the elastic constants.
机译:多晶材料的平均弹性不仅取决于各个晶粒的各向异性弹性,还取决于晶体取向的分布(由取向分布函数(ODF)表示),相邻晶粒的相互错位,谷物的大小和形状。我们使用先前开发的聚类模型来计算纹理,各向异性,取向相关性和晶粒形状的影响,而后者仅限于一些理想情况。该模型由数百个形状均匀且大小相等的晶粒组成。在模拟给定的ODF时,可通过使用随机生成器或适当的修改随机选择晶粒的各个方向。为了结合晶粒取向的相关性,我们使用了其他地方已经报道的方法。当晶粒受到外力作用时,晶粒内部发生的位移就以晶粒为基准的基础函数得到了扩展。通过要求这些膨胀和相关的应力在晶界处连续匹配来确定膨胀系数。一旦知道了位移,就可以计算出各处的应力和应变,并形成其空间平均值。有效弹性常数定义为将这些平均值相互关联。rn事实证明,对于给定的ODF(例如,对于随机ODF),如果假设存在明显不同的取向错误,则有效弹性常数可能会在由熟悉的Voigt和Reuss值定义的整个范围内变化。分布函数(MODF)。我们的模型也适合于研究晶粒形状对弹性常数的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号