首页> 外文会议>Tenth U.S.-Japan Conference on Composite Materials; Sep 16-18, 2002; Stanford, California >Thermochemical Behavior and Mechanical Strength of Liquid Crystalline Polymers-Magnesium Silicate Based Nanocomposites Investigated by Pyrolysis GCMS, Scanning Electron Microscopy and DSC
【24h】

Thermochemical Behavior and Mechanical Strength of Liquid Crystalline Polymers-Magnesium Silicate Based Nanocomposites Investigated by Pyrolysis GCMS, Scanning Electron Microscopy and DSC

机译:热解GCMS,扫描电镜和DSC研究液晶聚合物-硅酸镁纳米复合材料的热化学行为和机械强度

获取原文
获取原文并翻译 | 示例

摘要

Compared to traditional thermoplastic polymers liquid crystalline polymers would be superior in demanding material applications. Having a very small specific heat and a very good environmental stress and thermal stability liquid crystalline polymers also have competitive mechanical materials properties compared to conventional thermoplastics. LCP's characteristic feature is it's rigid rod-shaped aromatic polymer structure. Because of highly oriented macromolecules LCP's mechanical strength properties are different in fiber direction compared to transverse direction. Thermal expansion coefficients are smaller in the direction of melt orientation (machine direction with injection molded parts) but higher in transverse directions. Other drawbacks of injection molded LCP products have sometimes been poor surface quality and weak weld and knit line strengths. Significant progress has been achieved during recent years in development of LCP combination materials and their processing techniques. Particular LCP injection molding tools have been developed for pilot and commercial production of various parts in electronics and medical applications. Our research team has studied molecular structure - materials property relationships of LCPs and LCP based nanocomposites in order to decrease anisotropy and improve strength and toughness of weld and knit lines in injection molded parts. Electron microscopy (SEM and EDX) was used in this investigation for analyzing changes in microstructure as a consequence of changes in LCP materials compositions and processing parameters, differential scanning calorimetry (DSC) for monitoring and understanding of changes of LCP crystal structures in melting and solidifying processes and pyrolysis gas chromatography - mass spectrometry (GCMS) for analyzing potential thermal degradation of LCP materials in mechanochemical processing, compounding and injection molding processes, as well as in DSC analysis.
机译:与传统的热塑性聚合物相比,液晶聚合物在要求苛刻的材料应用中会更胜一筹。与常规的热塑性塑料相比,液晶聚合物具有非常小的比热以及非常好的环境应力和热稳定性,它们也具有竞争性的机械材料性能。 LCP的特征是其刚性的棒状芳族聚合物结构。由于高度定向的大分子,LCP的机械强度特性在纤维方向上与横向相比有所不同。热膨胀系数在熔体取向方向(带有注塑件的机器方向)上较小,而在横向方向上较高。注塑LCP产品的其他缺点有时是表面质量差,焊接和编织线强度较弱。近年来,LCP组合材料及其加工技术的开发取得了重大进展。已开发出专用的LCP注塑工具,用于电子和医疗应用中各种零件的中试和商业生产。我们的研究团队研究了LCP和基于LCP的纳米复合材料的分子结构-材料性能关系,以减少各向异性并提高注塑成型零件中焊缝和编织线的强度和韧性。本研究使用电子显微镜(SEM和EDX)分析由于LCP材料成分和加工参数变化而引起的微观结构变化,采用差示扫描量热法(DSC)监测和了解熔融和凝固过程中LCP晶体结构的变化。流程和热解气相色谱-质谱(GCMS),用于分析机械化学加工,复合和注塑过程以及DSC分析中LCP材料的潜在热降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号