首页> 外文会议>EV technology for specialty applications 2019 >A Concept for Assessing the Impact of Enhanced Fast Charging Availability on Battery Operation and Design
【24h】

A Concept for Assessing the Impact of Enhanced Fast Charging Availability on Battery Operation and Design

机译:评估增强的快速充电可用性对电池操作和设计的影响的概念

获取原文
获取原文并翻译 | 示例

摘要

In recent years, increasing efforts have been made to establish fast charging infrastructure as a way to solve the problem of range anxiety associated with battery electric vehicles. Global ventures and societies increase almost annually the amount of fast charging stations and possible charging power. Currently, a European-wide network of 350 kW fast charging stations is in ramp up phase enabling charging times equivalent to refueling times of combustion vehicles. Alongside with increased fast charging possibility, also usage will increase, if vehicles will be adequately equipped. There has been much discussion about fast charging and its impact on battery performance. Fast charging can be defined as reducing charging time by operating the battery beyond the cell manufacturer specifications close to the physical and safety limits of a battery cell. Many parameters affect battery fast charging capabilities, changing and interacting over vehicle lifetime. Recent publications investigated the limiting effects, such as lithium plating and thermal development, and provided different charging regimes to solve the contradictions charging time, accelerated aging and energy density to optimize fast charging procedures. Despite existing literature in this field of research, the choice for the right fast charging strategy is still not trivial to make and depends on an in-depth analysis of all occurring effects over vehicle lifetime. We present an approach to analyze and model the interacting effects during fast charging on battery performance, incorporating electrical and thermal effects up to battery pack level on a life-cycle timescale. Focus is set on verifying and transferring results from a cell level perspective to an automotive life-cycle scale. The modelling approach will reveal the answers to the questions: (1) How does fast charging affect battery pack lifetime performance and what will be the driving mechanisms? (2) How can battery packs be optimally designed in advance and managed by the battery management system in operation, i.e. which charging strategy is optimal in terms of operating current, voltage range and temperature to avoid negative effects on battery lifetime performance and customer acceptance? To do so, adequate cell models will be utilized to imitate cell electrical and thermal behavior and extended with an aging model covering battery degradation under fast charging procedures. The cell model will be scaled to battery pack system level incorporating balancing currents and cell-to cell thermal interdependencies. Realistic automotive use-case scenarios will be applied over a full vehicle life cycle to reveal which phenomenona will occur and finally lead to battery pack aging and failure, e.g. which can be either the weakest cell in the battery pack because of inhomogeneities or the general battery pack average degradation. With the model and a broad understanding of the interdependencies during fast charging at hand, measures can be derived to optimize design and operation of battery packs in electric vehicles with fast charging capability, e.g. battery management strategies can be optimized based on various effects over vehicle lifetime. Also, a strategy can be developed ensuring that charging speed is not limited during long-term operation of the vehicle, since range anxiety will not completely vanish if charging time reliability is not maintained over vehicle lifetime.
机译:近年来,为建立快速充电基础设施做出了越来越多的努力,以解决与电池电动车辆相关的范围焦虑的问题。全球企业和社会几乎每年都在增加快速充电站和可能的充电功率。目前,欧洲范围内由350 kW的快速充电站组成的网络处于加速阶段,充电时间等于燃烧汽车的加油时间。如果车辆配备得当,除了增加快速充电的可能性外,使用量也会增加。关于快速充电及其对电池性能的影响,已经有很多讨论。快速充电可以定义为通过操作电池超出电池制造商的规定(接近电池物理和安全极限)来减少充电时间。许多参数会影响电池的快速充电能力,并在车辆使用寿命内发生变化和相互影响。最近的出版物研究了限制效应,例如锂电镀和热发展,并提供了不同的充电方式来解决矛盾的充电时间,加速老化和能量密度以优化快速充电程序。尽管在该研究领域中已有文献,但选择正确的快速充电策略仍然不是一件容易的事,它取决于对车辆使用寿命内所有发生的影响的深入分析。我们提出了一种方法来分析和建模快速充电期间对电池性能的相互作用影响,并在整个生命周期时间尺度上将电和热效应纳入电池组水平。重点放在验证结果并将结果从单元级别的角度转移到汽车生命周期的规模。该建模方法将揭示以下问题的答案:(1)快速充电如何影响电池组的使用寿命,其驱动机制是什么? (2)如何预先优化设计电池组并由运行中的电池管理系统进行管理,即哪种充电策略在工作电流,电压范围和温度方面是最佳的,以避免对电池寿命性能和客户接受度产生负面影响?为此,将利用适当的电池模型来模仿电池的电和热行为,并使用涵盖快速充电过程中电池退化的老化模型进行扩展。电池单元模型将缩放到包括平衡电流和电池单元到电池单元之间的相互依赖性的电池组系统级别。现实的汽车用例场景将应用于整个汽车生命周期,以揭示将要发生的现象并最终导致电池组老化和故障,例如由于不均匀性,它可能是电池组中最弱的电池,也可能是一般的电池组平均退化。有了该模型并广泛了解手头快速充电过程中的相互依赖性,可以得出措施来优化具有快速充电能力的电动汽车中电池组的设计和操作,例如电池管理策略可以基于车辆寿命中的各种影响进行优化。而且,可以开发一种策略来确保在车辆的长期操作期间不限制充电速度,因为如果在车辆寿命内不维持充电时间可靠性,则范围焦虑将不会完全消失。

著录项

  • 来源
  • 会议地点 Strasbourg(FR)
  • 作者单位

    Technical University of Munich, Instiute of Automotive Technology, Boltzmannstrasse 15, Garching bei Munchen, D-85748 Germany;

    Technical University of Munich, Instiute of Automotive Technology, Boltzmannstrasse 15, Garching bei Munchen, D-85748 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-26 14:32:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号