首页> 外文会议>Technical conference of American Society for Composites >Impact Response and Failure Prediction of Marine Composite Structures
【24h】

Impact Response and Failure Prediction of Marine Composite Structures

机译:船舶复合结构的冲击响应和破坏预测

获取原文

摘要

Well-designed composite sandwich structures and joints are crucial in achieving satisfactory service life and survivability for naval ships. Damage in composite sandwich and joint structures subjected to an impact is characterized by the coexistence of discrete (delamination and debonding) and continuum damage (matrix cracking and intralaminar damage). Either a fracture mechanics-based or a continuum damage mechanics-based tool cannot effectively characterize the interaction between the discrete and continuum damage and their compounding effect that leads to the final rupture. Because of the constituent driven failure progression, the stress and strain at the element level cannot be directly used to predict the constituent damage and the resulting stiffness degradation.In this paper, a hybrid model based on the discrete and continuum damage progression is developed and numerically implemented within the LS-DYNA environment via a user-defined material subroutine. The continuum damage progression and its resulting stiffness degradation are predicted based on the constituent stress/strain and their associated failure criteria while the delamination damage is numerically captured via a cohesive interface model. To extract the constituent stress/strain from the corresponding stress/strain at the element level, the new micromechanics model (CELLMAT) described in this paper is used to bridge the material response from one length scale to another. Given the constituent stress/strain, the mechanism-driven constituent failure criteria are used to predict the failure mode and damage progression. The micro-damage resulting from the fiber/tow/matrixfailure is described by a set of internal variables that characterize the degradation of the orthotropic material stiffness. Both the initiation and propagation of an interface debonding is numerically simulated using the interface cohesive element with a user-defined cohesive law. To prevent the penetration of the upper and lower surface of a cracked element, an eroding single surface contact is used within LSDYNA-3D. Both the validity and applicability of the hybrid model are demonstrated via numerical examples.
机译:精心设计的复合夹层结构和接头对于实现令人满意的海军舰艇使用寿命和生存能力至关重要。复合夹层结构和关节结构受到冲击的破坏的特征是离散(分层和剥离)和连续破坏(基体破裂和层内破坏)并存。基于断裂力学或基于连续损伤力学的工具都不能有效地表征离散损伤和连续损伤之间的相互作用及其导致最终破裂的复合效应。由于成分驱动的破坏进程,不能直接使用单元级别的应力和应变来预测成分破坏和随之而来的刚度退化。本文建立了基于离散和连续破坏进程的混合模型,并进行了数值模拟通过用户定义的材质子例程在LS-DYNA环境中实现。基于组成应力/应变及其相关的破坏准则,可以预测连续损伤的进展及其导致的刚度降低,同时通过内聚界面模型以数字方式捕获分层损伤。为了从元素级别的相应应力/应变中提取出组成应力/应变,本文所述的新型微力学模型(CELLMAT)用于将材料响应从一种长度尺度转换为另一种长度尺度。给定组成应力/应变,机制驱动的组成失效准则可用于预测失效模式和破坏进程。由纤维/丝束/基体破坏产生的微损伤由一组内部变量描述,这些变量表征正交异性材料刚度的下降。使用具有用户定义的内聚律的界面内聚元素,对界面剥离的发起和传播都进行了数值模拟。为防止裂纹元件的上,下表面渗透,LSDYNA-3D内部使用了腐蚀的单面接触。通过数值算例证明了混合模型的有效性和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号