首页> 外文期刊>Journal of Materials Science >Multi-scale dynamic failure prediction tool for marine composite structures
【24h】

Multi-scale dynamic failure prediction tool for marine composite structures

机译:船舶复合结构多尺度动态破坏预测工具

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A high fidelity assessment of accumulative damage of woven fabric composite structures subjected to aggressive loadings is strongly reliant on the accurate characterization of the inherent multi-scale microstructures and the underlying deformation phenomena. Damage in composite sandwich and joint structures is characterized by the coexistence of discrete (delamination) and continuum damage (matrix cracking and intralaminar damage). A purely fracture mechanics-based or a purely continuum damage mechanics-based tool alone cannot effectively characterize the interaction between the discrete and continuum damage and their compounding effect that leads to the final rupture. In this paper, a hybrid discrete and continuum damage model is developed and numerically implemented within the LS-DYNA environment via a user-defined material model. The continuum damage progression and its associated stiffness degradation are predicted based on the constituent stress/strain and their associated failure criteria while the discrete delamination damage is captured via a cohesive interface model. A multi-scale computational framework is established to bridge the response and failure predictions at constituent, ply, and laminated composite level. The calculated constituent stress and strain are used in a mechanism-driven failure criterion to predict the failure mode, failure sequence, and the synergistic interaction that leads to global stiffness degradation and the final rupture. The use of the cohesive interface model can capture the complicated delamination zone without posing the self-similar crack growth condition. The unified depiction of the continuum and discrete damage via the damage mechanics theory provides a rational way to study the coupling effects between the in-plane and the out-of-plane failure modes. The applicability and accuracy of the damage models used in the hybrid dynamic failure prediction tool are demonstrated via its application to a circular plate and a composite hat stiffener subjected to shock and low velocity impact loading. The synergistic interaction between the continuum and discrete damage is explored via its application to a sandwich beam subjected to a low velocity impact.
机译:高保真度评估机织织物复合结构在受到侵蚀性载荷时的累积损伤,这在很大程度上取决于固有多尺度微结构和潜在变形现象的准确表征。复合材料夹心结构和接头结构的破坏特征是离散(分层)和连续破坏(矩阵破裂和层内破坏)并存。单纯基于断裂力学或纯粹基于连续损伤力学的工具不能有效地表征离散损伤和连续损伤之间的相互作用及其导致最终破裂的复合效应。在本文中,通过用户定义的材料模型,在LS-DYNA环境中开发了混合离散和连续损伤模型,并在LS-DYNA环境中对其进行了数值实现。基于组成应力/应变及其关联的破坏准则,可以预测连续破坏的进展及其相关的刚度降低,同时通过内聚界面模型捕获离散的分层破坏。建立了一个多尺度的计算框架,以在成分,层和层压复合材料级别上桥接响应和故障预测。计算得出的组成应力和应变在机制驱动的失效准则中用于预测失效模式,失效序列以及导致整体刚度降低和最终破裂的协同相互作用。内聚界面模型的使用可以捕获复杂的分层区域,而不会造成自相似的裂纹扩展条件。通过损伤力学理论对连续损伤和离散损伤的统一描述,为研究平面内和平面外失效模式之间的耦合效应提供了一种合理的方法。通过将其应用于承受冲击和低速冲击载荷的圆板和复合帽形加劲肋,证明了混合动力失效预测工具中使用的损伤模型的适用性和准确性。通过将连续损伤与离散损伤应用于承受低速冲击的夹层梁,探索了协同作用。

著录项

  • 来源
    《Journal of Materials Science》 |2006年第20期|6673-6692|共20页
  • 作者单位

    Applied Mechanics Department Anteon Corporation SEG/Engineering Technology Center;

    Anteon Corporation SEG/Engineering Technology Center;

    Center for Advanced Materials and Smart Structures NC AT State University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号