首页> 外文会议>Symposium on Thin Films - Stresses and Mechanical Properties X; 20031201-20031205; Boston,MA; US >Dislocation Nucleation and Segregation in Nano-scale Contact of Stepped Surfaces
【24h】

Dislocation Nucleation and Segregation in Nano-scale Contact of Stepped Surfaces

机译:台阶表面纳米尺度接触中的位错成核和偏析

获取原文
获取原文并翻译 | 示例

摘要

A myriad of engineering applications involve contact between two surfaces, which induces localized plastic deformation near the surface asperities. As a generic problem in studying nanometer scale plastic deformation of solid surfaces, a unit process model of dislocation formation near a surface step under contact loading of a flat rigid surface is considered. The driving force on the dislocation is calculated using conservation integrals. The effect of surface adhesion, step size and lattice resistance on the dislocation driving force are analyzed in a continuum dislocation model, while the nucleation process is simulated atomistically. The driving force formula is used for a dislocation nucleation criterion and to get the equilibrium distance traveled by the dislocation away from the surface step. Results of the unit process model show that under a normal contact load dislocations nucleated in certain slip planes can only stay in a thin layer near the surface, while dislocations nucleated along other slip planes easily move away from the surface into the bulk material. The former dislocation is named anti-load dislocation and the latter dislocation is called pro-load dislocation. Embedded atom method (EAM) is utilized to perform the atomistic simulation of the unit-process model. As predicted by the continuum dislocation model, the atomistic simulations also indicate that surface adhesion plays significant role in dislocation nucleation process. Varying the surface adhesion leads to three different regimes of load-deflection instabilities, namely, just dislocation nucleation instability for no adhesive interaction, two distinct surface adhesion and dislocation nucleation instabilities for weak adhesive interaction and a simultaneous surface adhesion and dislocation nucleation instability for strong adhesive interaction. The atomistic simulations provide additional information on dislocation nucleation and growth near the surface steps. The results of dislocation segregation predict existence of a thin tensile-stress layer near the deformed surface and the results on the adhesion effect provides a cold-welding criterion.
机译:大量的工程应用涉及两个表面之间的接触,这会引起表面粗糙附近的局部塑性变形。作为研究固体表面纳米级塑性变形的一个普遍问题,考虑了在平坦刚性表面的接触载荷下表面台阶附近位错形成的单位过程模型。使用守恒积分计算位错上的驱动力。在连续位错模型中分析了表面附着力,步长和晶格电阻对位错驱动力的影响,同时对成核过程进行了原子模拟。驱动力公式用于位错成核标准,并获得位错离开表面台阶所经过的平衡距离。单元过程模型的结果表明,在正常接触载荷下,在某些滑移面上成核的位错只能停留在表面附近的薄层中,而沿着其他滑移面成核的位错很容易从表面移到块状材料中。前者的位错称为反负荷位错,后者的位错称为亲负荷位错。嵌入式原子方法(EAM)用于执行单元过程模型的原子模拟。正如连续位错模型所预测的,原子模拟也表明表面粘附在位错成核过程中起着重要作用。改变表面粘附力会导致三种不同的载荷-挠度失稳机制,即仅发生位错成核不稳定性(无粘合剂相互作用),两个明显的表面粘附力和位错成核不稳定性(弱粘合剂相互作用)以及同时发生表面粘附和位错成核不稳定性(强粘合剂)相互作用。原子模拟提供了有关位错形核和表面台阶附近生长的更多信息。位错偏析的结果预测在变形表面附近存在薄的拉伸应力层,而粘附效果的结果提供了冷焊准则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号