首页> 外文会议>Symposium Proceedings vol.886; Symposium on Materials and Technologies for Direct Thermal-to-Electric Energy Conversion; 20051128-1202; Boston,MA(US) >New Directions in Thermoelectric Materials Research: Synthesis of Nanoscale Precursors for 'Bulk-Composite' Thermoelectric Materials
【24h】

New Directions in Thermoelectric Materials Research: Synthesis of Nanoscale Precursors for 'Bulk-Composite' Thermoelectric Materials

机译:热电材料研究的新方向:“散装复合”热电材料的纳米级前体的合成

获取原文
获取原文并翻译 | 示例

摘要

Over a decade ago it was predicted that nano-scaled thermoelectric (TE) materials might have superior properties to that of their bulk counterparts. Subsequently, a significant increase in the figure of merit, ZT (ZT > 2), has been reported for nano-scaled systems such as superlattice and quantum dot systems constituently based on those more commonly used bulk TE materials (e.g., Bi_2Te_3 and PbTe). However, the challenge remains to achieve these higher performance results in bulk materials in order to more rapidly incorporate them into standard TE devices. Recent theoretical work on boundary scattering of phonons in amorphous materials indicates that micron and submicron grains could be very beneficial in order to lower the lattice thermal conductivity and yet not deteriorate the electron mobility. The focus in this paper will be to highlight some of our new directions in bulk thermoelectric materials research. Thermoelectric materials are inherently difficult to characterize and these difficulties are magnified at high temperatures. Specific materials will be discussed, especially those bulk materials that exhibit favorable properties for potential high temperature power generation capabilities. One potentially fruitful research direction is to explore whether hybrid TE materials possess possible enhanced TE properties. These "engineered" hybrids include materials that exhibit sizes from on the order of a few nanometers to hundreds of nanometers of the initial materials. These initial materials are then incorporated into a bulk structure. A discussion of some of the future research directions that we are pursuing is highlighted, including some bulk materials, which are based on nano-scaled or hybrid composites. The synthesis techniques and the synthesis results of many of these nano-scale precursor materials will be a primary focus of this paper.
机译:十多年前,据预测,纳米级热电(TE)材料可能具有比其本体同类材料更好的性能。随后,据报导,对于纳米级系统,例如超晶格和量子点系统,其品质因数ZT(ZT> 2)显着增加,这些系统的组成部分是基于那些更常用的块状TE材料(例如Bi_2Te_3和PbTe) 。但是,要在散装材料中实现这些更高的性能结果,以便将它们更快地整合到标准TE器件中,仍然是挑战。关于非晶态材料中声子边界散射的最新理论工作表明,微米和亚微米晶粒对于降低晶格热导率而又不降低电子迁移率可能非常有益。本文的重点将是突出我们在块状热电材料研究中的一些新方向。热电材料固有地难以表征,并且这些困难在高温下被放大。将讨论特定的材料,尤其是那些对潜在的高温发电能力显示出有利性能的散装材料。一个潜在的富有成果的研究方向是探索混合TE材料是否具有可能增强的TE性能。这些“工程化”的杂化材料所包含的材料,其初始材料的尺寸从几纳米到几百纳米不等。然后将这些初始材料合并为块状结构。重点讨论了我们正在追求的一些未来研究方向,包括一些基于纳米级或混合复合材料的散装材料。这些纳米级前体材料中许多的合成技术和合成结果将是本文的主要重点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号