【24h】

Non Volatile Memory Technologies: Floating Gate Concept Evolution

机译:非易失性存储技术:浮栅概念的发展

获取原文
获取原文并翻译 | 示例

摘要

The most relevant phenomenon of this last decade in the field of semiconductor memories has been the explosive growth of the Flash memory market, driven by cellular phones and other types of electronic portable equipments (palm top, mobile PC, mp3 audio player, digital camera and so on). Moreover, in the coming years portable systems will ask even more non volatile memories either with high density and very high writing throughput for data storage application, or with fast random access for code execution in place. The strong consolidated know-how (more than ten years of experience), the flexibility and the cost make the floating gate Flash Memory a largely utilized, well-consolidated and mature technology for most of the non-volatile memory application. Today Flash sales represent a considerable amount of the overall semiconductor market. Nowadays two of the several cell architecture proposed up to now can be considered as industry standard: the common ground NOR Flash that due to its versatility is addressing both the code and data storage segments and the NAND Flash, optimized for the data storage market. The exploitation of the multilevel approach at each technology node allows the increase of the memory efficiency, about doubling the density at the same chip size, widening the application range and reducing the cost per bit. In this paper the main issues related to both NOR and NAND Flash memory technology will be summarized, with the aim of describing both the basic functionality of the memory cell and the main cell architecture today consolidated. Both cells are basically a floating-gate MOS transistor, programmed by channel hot electron (NOR) or by Fowler-Nordheim tunneling (NAND) and erased by Fowler-Nordheim tunnel. The main reliability properties, charge retention and endurance, are presented, together with some comments on the basic physical mechanisms responsible for. A couple of innovative approaches to floating gate cell evolution, namely nanocrystal memory and 3-D cell will be described. Finally the Flash cell scaling issues will be covered, pointing out the main challenges. The Flash cell scaling has been demonstrated to be really possible and to be able to follow the Moore's law down to the 90 nm technology generations. The technology development and the consolidated know-how are expected to sustain the scaling trend down to the 50 nm technology node and below as forecasted by the ITRS roadmap.
机译:在过去的十年中,半导体存储器领域最相关的现象是闪存市场的爆炸性增长,其受到蜂窝电话和其他类型的电子便携式设备(掌上电脑,移动PC,mp3音频播放器,数码相机和依此类推)。而且,在未来几年中,便携式系统将要求更多的非易失性存储器,它们要么具有高密度和非常高的写入吞吐量以用于数据存储应用,要么具有快速随机访问以实现适当的代码执行。强大的整合专业知识(超过十年的经验),灵活性和成本使浮栅闪存成为大多数非易失性存储器应用中被广泛利用,整合和成熟的技术。如今,闪存的销售额已占整个半导体市场的很大一部分。如今,迄今为止提出的几种单元架构中的两种可以被视为行业标准:由于其通用性而着眼于代码和数据存储领域以及针对数据存储市场进行了优化的NAND闪存的共同点NOR闪存。在每个技术节点上采用多级方法可以提高存储效率,在相同芯片尺寸下,密度可以提高一倍左右,从而可以扩大应用范围并降低每位成本。在本文中,将概述与NOR和NAND闪存技术相关的主要问题,目的是描述存储单元的基本功能和目前整合的主要单元架构。这两个单元基本上都是浮栅MOS晶体管,通过沟道热电子(NOR)或Fowler-Nordheim隧道(NAND)进行编程,并通过Fowler-Nordheim隧道擦除。介绍了主要的可靠性属性,电荷保留和持久性,以及对负责的基本物理机制的一些评论。将描述几种用于浮栅单元演进的创新方法,即纳米晶体存储器和3-D单元。最后,将讨论Flash单元缩放问题,并指出主要挑战。事实证明,闪存单元缩放确实是可行的,并且能够遵循摩尔定律直至90 nm技术时代。正如ITRS路线图所预测的那样,预计技术发展和整合的专有技术将保持缩小趋势直至50 nm技术节点及以下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号