首页> 外文会议>ASME summer bioengineering conference;SBC2010 >The Interplay between Biomechanical and Biochemical Factors Regulates Lumen Formation and Navigation of Endothelial Cell Sprouts
【24h】

The Interplay between Biomechanical and Biochemical Factors Regulates Lumen Formation and Navigation of Endothelial Cell Sprouts

机译:生物力学和生化因素之间的相互作用调节管腔形成和内皮细胞新芽的航行。

获取原文
获取原文并翻译 | 示例

摘要

Angiogenesis is the process of forming new blood vessels that originate from pre-existing vessels. In early angiogenesis stages, endothelial cells (ECs) migrate from the lumen of developed blood vessels into the surrounding extracellular matrix (ECM). Through the coordinated actions of migration and proliferation, these ECs organize into tubular capillary-like structures called sprouts. In this study, 3D EC sprout formation was examined using a microfluidic device that enabled the separate and simultaneous tuning of biomechanical and biochemical stimuli (Fig. 1). While previous investigations have been performed on each of these factors individually~(1,2), more recent studies have identified a critical interplay between the simultaneous effects of these two factors~3. For example, we previously studied 2D EC chemotaxis in response to vascular endothelial growth factor (VEGF) gradients in the absence of biomechanical stimulation.~4 In developing a model that enables precise specification of biochemical and biomechanical cues, we utilized a protocol that enables ECs to undergo a transition from the 2D to 3D culture environment mimicking angiogenic sprouting. Here we quantified the relative importance and combined consequences of discrete changes in matrix density, growth factor concentration, and growth factor gradient steepness during the stages of early sprout initiation, sprout elongation, sprout navigation, and lumen formation.
机译:血管生成是形成源自先前存在的血管的新血管的过程。在早期血管生成阶段,内皮细胞(EC)从发达血管的内腔迁移到周围的细胞外基质(ECM)中。通过迁移和增殖的协调作用,这些EC组成了管状的毛细管状结构,称为新芽。在这项研究中,使用微流体装置检查了3D EC芽的形成,该装置能够同时进行生物力学和生化刺激的调节(图1)。尽管以前分别对这些因素进行了研究[1,2],但最近的研究发现这两个因素的同时作用之间存在着关键的相互作用[3]。例如,我们先前研究了在没有生物力学刺激的情况下响应血管内皮生长因子(VEGF)梯度的二维EC趋化性。〜4在开发能够精确指定生物化学和生物力学线索的模型时,我们使用了能够实现EC的方案经历了从2D到3D培养环境的过渡,模仿了血管新生。在这里,我们量化了早期发芽初期,发芽伸长,发芽航行和管腔形成阶段基质密度,生长因子浓度和生长因子梯度陡度的离散变化的相对重要性和综合后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号