首页> 外文会议>ASME summer bioengineering conference;SBC2010 >A Coupled Particle-Continuum Model of Nanoparticle Targeted Delivery Under Vascular Flow With Experimental Validation
【24h】

A Coupled Particle-Continuum Model of Nanoparticle Targeted Delivery Under Vascular Flow With Experimental Validation

机译:纳米粒子靶向输送在血管流动下的耦合颗粒连续模型与实验验证

获取原文
获取原文并翻译 | 示例

摘要

Nanomedicine poses a new frontier in medical technology with the advantages of targeted delivery and patient specific design. In applications of nanoparticle targeted drug delivery, the delivery efficiency is controlled by the physical properties of the nanoparticle such as its size, shape, ligand density, as well as external environmental conditions such as flow rate1 and blood vessel diameter. Proper drug dosage choice relies on determination of the attachment and detachment rates of the nanoparticles at the active region and the understanding of the complex process of targeted drug delivery. A few paniculate models have been proposed to study the adhesion individual spherical or non-spherical nanoparticles on receptor coated wall. Meanwhile, continuum convection-diffusion-reaction models have been widely used23'4 to calculate the drug concentration under various conditions, which usually assumes specific binding and de-binding constants. In reality, these binding and de-binding rates largely vary with physical properties of the particles and local flow conditions. However, there has not been any study that links the particulate level nanoparticle size and shape information to the system level bounded particle concentration. A hybrid particle binding dynamics and continuum convection-diffusion-reaction model is presented to study the effect of shear flow rate and particle size on binding efficiency. The simulated concentration of bounded nanoparticles agrees well with experimental results in flow chamber studies.
机译:纳米医学凭借靶向递送和针对患者的设计优势,在医疗技术领域提出了新的领域。在以纳米颗粒为靶标的药物递送应用中,递送效率由纳米颗粒的物理特性(例如其大小,形状,配体密度)以及外部环境条件(例如流速和血管直径)控制。正确的药物剂量选择取决于纳米颗粒在活性区域的附着和脱离速率的确定以及对靶向药物递送的复杂过程的了解。已经提出了一些圆锥模型来研究单个球形或非球形纳米颗粒在受体涂层壁上的粘附性。同时,连续对流扩散反应模型已被广泛使用[23] [4]来计算各种条件下的药物浓度,该条件通常假设特定的结合常数和去结合常数。实际上,这些结合和解结合速率随颗粒的物理性质和局部流动条件而变化很大。但是,还没有任何研究将颗粒级纳米颗粒的大小和形状信息与系统级受限颗粒浓度联系起来。提出了一种混合的颗粒结合动力学和连续对流扩散反应模型,以研究剪切流速和粒径对结合效率的影响。结合的纳米颗粒的模拟浓度与流动室研究的实验结果非常吻合。

著录项

  • 来源
  • 会议地点 Naples FL(US);Naples FL(US)
  • 作者单位

    Department of Mechanical and Aerospace Engineering University of Texas at Arlington, Arlington, TX;

    Department of Bioengineering University of Texas at Arlington, Arlington, TX;

    Department of Mechanical and Aerospace Engineering University of Texas at Arlington, Arlington, TX;

    Department of Bioengineering University of Texas at Arlington, Arlington, TX;

    Department of Mechanical and Aerospace Engineering University of Texas at Arlington, Arlington, TX;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人体工程学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号