首页> 外文会议>Structural intermetallics 1997 >Tensile and low cycle fatigue properties of Ti-48Al-2W-0.5Si gamma titanium aluminide
【24h】

Tensile and low cycle fatigue properties of Ti-48Al-2W-0.5Si gamma titanium aluminide

机译:Ti-48Al-2W-0.5Siγ铝钛合金的拉伸和低周疲劳性能

获取原文
获取原文并翻译 | 示例

摘要

Nine batches of the #gamma# -TiAl alloy Ti-48al-2W-0.5Si with a slightly varying composition have been examined through tensile and low cycle fatigue testing. The study has shown a large influence of the microstructure on the tensile and fatigue properties. A duplex fine grained microstructure has superior properties in comparison with a material low in aluminium with a coarse grained nearly lamellar structure. In addition, materials with the duplex structure show a much smaller scatter in test results. The brittle to ductile trasition behaviour typical for #gamma# -TiAl occurs between 700 and 800 deg C. The fracture mode of the equiaxed #gamma# -grains is altered from a brittle inter-or transgranular mode to a ductile dimple-like fracture mode in this temperature range. The lamellar colonies sustain their brittle fracture behaviour. The low cycle properties can be described with the well-known Coffin-Manson equation. The strain controlled fatigue properties show a strong sensitivity to the strain range, an effect that can be attributed to the high Young's modulus and the relatively low yield strength of the material which elads to inelastic straining and fatigue damage at small strain ranges. The duplex material exhibits longer lives due to larger isotropic hardening and smaller Bauschinger effect, which lead to smaller inelastic strains and damage in each cycle. As in the tensile testing the scatter in results is smaller. The scatter in tensile and fatigue test results is explained by the anisotropic properties of the lamellar colonies. Fractography has shown that initiation often occurs between the lamellas in large lamellar colonies at the surface of the gauge length. The probability to have a lamellar colony with the lamellas oriented perpendicular to the loading axis producing premature failure is increased as the content of this microconstituent is increased.
机译:通过拉伸和低周疲劳测试,对9批组成稍有变化的#γ#-TiAl合金Ti-48al-2W-0.5Si进行了检验。研究表明,微观结构对拉伸和疲劳性能有很大影响。与低铝且具有粗晶粒近乎层状结构的材料相比,双相细晶粒微观结构具有优越的性能。此外,具有双工结构的材料在测试结果中的散布小得多。 #gamma#-TiAl的典型脆性至延展性转变行为发生在700至800摄氏度之间。等轴#gamma#-晶粒的断裂模式从脆性的晶间或跨晶态转变为延性的酒窝状断裂模式在这个温度范围内。层状菌落维持其脆性断裂行为。低循环特性可以用众所周知的科芬曼森方程来描述。应变控制的疲劳特性对应变范围表现出很强的敏感性,这种效果可以归因于高杨氏模量和材料的相对较低的屈服强度,从而导致在小应变范围内容易发生非弹性应变和疲劳损伤。由于较大的各向同性硬化和较小的包辛格效应,双相材料的寿命更长,从而导致较小的无弹性应变和每个循环的损坏。如在拉伸试验中那样,结果的分散较小。拉伸和疲劳测试结果中的分散性是由层状菌落的各向异性引起的。分形术表明,引发通常发生在标距长度表面的大型层状菌落中的层之间。随着该微成分含量的增加,具有层状菌落且层状菌落垂直于加载轴而产生过早破坏的可能性也增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号