【24h】

Overview of Materials Technologies for Space Nuclear Power and Propulsion

机译:航天核动力与推进材料技术概述

获取原文
获取原文并翻译 | 示例

摘要

A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO_2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B_4C. LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and tower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO_2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor.
机译:作为美国能源部特殊目的裂变技术计划的一部分,目前正在评估各种不同的空间核系统。计划进行评估的系统的短期子集,从用于空间推进的50 kWe气体,泵送液态金属或液态金属热管冷却反应堆到用于火星表面动力应用的3 kWe热管或泵送液态金属系统。审查了成功开发近期空间核动力和推进系统所需的材料技术的现状。本概述中检查的材料包括燃料(UN,UO_2,UZrH),覆层和结构材料(不锈钢,超合金,耐火合金),中子反射器材料(Be,BeO)和中子屏蔽材料(B_4C。LiH)。由于运行温度降低,燃料消耗降低和塔辐射损害水平,材料技术问题对3 kWe反应堆系统的要求大大降低。在评估中的3 kWe反应堆中,一些反应堆子组件正在接近或超过其工程极限使用,这可能会对5至10年的使用寿命设计目标产生不利影响。通过合并一些工程设计更改,似乎可以解决3 kWe反应堆系统中的大多数问题。将概述为空间核反应堆提议的各种材料的设计极限(温度,燃耗,应力,辐射水平)。例如,在3 kWe Na冷却的热管反应堆(斯特林发动机)概念中,316型不锈钢的温度和应力极限将由热蠕变和CO_2腐蚀考虑而不是由辐射破坏问题控制。相反,即使对于与3 kWe反应堆相关的较低辐射剂量,LiH屏蔽材料的较低工作温度极限也可能由电离辐射损伤(辐射分解)引起的溶胀来定义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号