首页> 外文会议>Society of Photo-Optical Instrumentation Engineers (SPIE);SPIE Proceedings >Fabrication and Investigation of Photonic Crystal Microcavities for Solid State Quantum Optics
【24h】

Fabrication and Investigation of Photonic Crystal Microcavities for Solid State Quantum Optics

机译:固态量子光学用光子晶体微腔的制备和研究

获取原文

摘要

We review our recent progress in the fabrication and understanding of ultra-low mode volume,high Q-factor microcavities for quantum dot based cavity QED experiments. The cavities arerealized by the controlled incorporation of defects into 2D photonic crystals that consist of atriangular lattice of air holes within an active Air-GaAs-Air slab waveguide containing InGaAsself-assembled quantum dots. Two specific cavity designs are studied: the L3-cavity consisting ofthree missing holes along a line and the Y1-cavity consisting of a single missing hole with stronglyreduced symmetry. Very good quantitative agreement is obtained between the results of spatiallyresolved optical spectroscopy and 3D calculations of the photonic bandstructure and cavity modestructure. For both cavity designs, cavity Q-factors up to ~8000 are measured for specific designswith ultra-low mode volumes V_(mode)< (λ/n) 3. The relative contribution of cavity losses due to outof plane coupling to the free space continuum, in-plane losses through the photonic crystal and viascattering due to disorder and fabrication imperfections are probed for both cavity designs. Wedemonstrate that in-plane loss can be almost completely inhibited by tuning the localized cavitymodes deeper into the photonic bandgap and the potential to fine tune the out-of plane losses viasubtle modifications of the cavity design parameters. This procedure is shown to result in up to~3x improvements of the cavity Q-factor. The Y1-design is shown to be particularly suitable forQD based cavity QED experiments, due to its very low mode volume, high Q-factors achievable(~7000) and flexibility for enhancement through careful modification of the cavity design.
机译:我们回顾了在基于量子点腔QED实验的超低模量,高Q因子微腔的制造和理解方面的最新进展。通过将缺陷受控地结合到二维光子晶体中来实现空腔,该二维光子晶体由包含InGaAs自组装量子点的有源Air-GaAs-空气平板波导内的气孔三角晶格组成。研究了两种特定的腔体设计:由直线上的三个缺失孔组成的L3腔,以及由对称性大大降低的单个缺失孔组成的Y1腔。空间分辨光谱学的结果与光子能带结构和腔模结构的3D计算之间获得了很好的定量一致性。对于这两种腔体设计,对于具有超低模式体积V_(mode)<(λ/ n)3的特定设计,可测量高达〜8000的腔体Q因子。由于平面外耦合至自由空间而引起的腔体损耗的相对贡献对于两种腔体设计,都对连续性,由于光子晶体造成的平面内损耗以及由于无序和制造缺陷造成的通孔散射进行了探讨。 Wedemon认为,通过在光子带隙中更深地调整局部腔模,以及通过细微修改腔体设计参数来微调平面外损耗的可能性,几乎可以完全抑制平面内损耗。结果表明,该程序可将模腔Q系数提高约3倍。由于其极低的模式体积,可实现的高Q因子(〜7000)以及通过仔细修改型腔设计来增强的灵活性,Y1设计被证明特别适合基于QD的型腔QED实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号