首页> 外文会议>Society of Photo-Optical Instrumentation Engineers (SPIE);SPIE Proceedings >Development of a novel bioengineered tissue model and its application in the investigation of the depth selectivity of polarization-gating
【24h】

Development of a novel bioengineered tissue model and its application in the investigation of the depth selectivity of polarization-gating

机译:一种新型生物工程组织模型的开发及其在极化门控深度选择性研究中的应用

获取原文

摘要

Recently, there has been significant interest in using polarization gating to selectively probe superficial tissue tofacilitate the diagnosis of epithelial neoplasia. Thus, understanding the propagation of polarized light in tissue in generaland the mechanisms of polarization gating in particular are crucial for biomedical optics applications. However, theseinvestigations have been impeded in part by the lack of realistic tissue models that can replicate both the morphologicalcomplexity and the optical properties of biological tissue. Here we report the development of a novel bioengineeredconnective tissue model to study light transport in tissue. This tissue model was fabricated by combination ofscaffolding and crosslinking techniques. It demonstrates great similarity to real connective tissue in its opticalproperties and microarchitecture. Moreover, the physical and optical properties of the model can be reproduciblycontrolled. As an example, we demonstrated the application of this tissue model in our investigation of the depthsensitivity of polarization-gating. Specifically, we studied the effects of epithelium and connective tissue on thepenetration depth of differential polarization signals. Our results indicate that the penetration depth in both epithelialand connective tissues primarily depends on the optical thickness of the tissue: the polarization gated signal probes thesuperficial layer of tissue up to the optical depth of ~ 2. The corresponding physical penetration depth depends on thespecific tissue type and in the connective tissue is about 6 - 7 times shorter than in the epithelium (~ 40 - 50 microns and~ 200 - 300 microns, respectively).
机译:近来,使用极化门控来选择性探测浅表组织以促进上皮瘤形成的诊断引起了极大的兴趣。因此,总体上了解偏振光在组织中的传播,尤其是偏振门控的机制对于生物医学光学应用至关重要。然而,这些研究由于缺乏能够复制生物组织的形态复杂性和光学特性的现实组织模型而受到部分阻碍。在这里,我们报告一种新型的生物工程结缔组织模型的研究,以研究组织中的光传输。该组织模型是通过脚手架和交联技术的组合制成的。它在光学性质和微结构上显示出与真正的结缔组织的极大相似性。而且,模型的物理和光学性质可以可复制地控制。例如,我们证明了该组织模型在极化门控深度敏感性研究中的应用。具体来说,我们研究了上皮和结缔组织对微分极化信号穿透深度的影响。我们的结果表明,在两个上皮结缔组织中的穿透深度主要取决于组织的光学厚度:极化门控信号探测组织的表层直至光学深度约为2。相应的物理穿透深度取决于特定的组织类型并且在结缔组织中比在上皮中短约6-7倍(分别为约40-50微米和约200-300微米)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号