首页> 外文会议>Smart sensors, actuators, and MEMS VII; and Cyber physical systems >MEMS-based platform optimized for inkjet printing of nano-sized, gas sensitive functional metal oxides to enable the measurement of gas induced changes of the heating power
【24h】

MEMS-based platform optimized for inkjet printing of nano-sized, gas sensitive functional metal oxides to enable the measurement of gas induced changes of the heating power

机译:基于MEMS的平台经过优化,可用于喷墨打印对气体敏感的纳米级功能金属氧化物,从而能够测量气体引起的加热功率变化

获取原文
获取原文并翻译 | 示例

摘要

Metal oxide based gas sensors are usually read-out by measuring the overall resistivity of the gas sensitive layer. However, the reaction of the gas species with the metal oxide surface does not only change the electrical conductivity but also effects the required heating power to maintain the layer's temperature. This change in power consumption may be disregarded when using standard bulk sensor chips due to their overall high thermal mass. Nevertheless, micromachined Si based hotplate devices offer the possibility to measure these effects. Here we present results that have been obtained by using a novel hotplate platform optimized for low power consumption and inkjet printing of nano sized gas sensitive metal oxide particles. The temperature of the gas sensitive layer is controlled via the heater resistance and the power consumption is recorded with a fully automated gas measurement system. To separate changes in the heat conductivity of the gas matrix from the heat of the surface reaction, the measurements have been performed in parallel using hotplates with and without a metal oxide layer deposited onto them. Here layers composed of copper (II) oxide (CuO) have been used to highlight the possibilities of the novel approach. Determining both, the gas dependent resistivity as well as heating power yields two independent sensing quantities from one single device and might be an important cornerstone on the way towards selective metal oxide based gas sensors.
机译:通常通过测量气体敏感层的整体电阻率来读出基于金属氧化物的气体传感器。然而,气体种类与金属氧化物表面的反应不仅改变了电导率,而且影响了维持层温度所需的加热功率。当使用标准的大容量传感器芯片时,由于其整体较高的热质量,因此可以忽略功耗的这种变化。然而,基于微机械加工的硅基热板设备提供了测量这些影响的可能性。在这里,我们介绍通过使用针对低功耗和纳米尺寸的气敏金属氧化物颗粒的喷墨打印而优化的新型热板平台所获得的结果。气体敏感层的温度通过加热器电阻控制,并通过全自动气体测量系统记录功耗。为了从表面反应的热量中分离出气体基质的热导率变化,已使用带有和不带有沉积在其上的金属氧化物层的热板并行进行了测量。在这里,由氧化铜(CuO)组成的层已被用来强调这种新方法的可能性。同时确定与气体相关的电阻率和热功率,可以从一个设备产生两个独立的感应量,这可能是通往基于选择性金属氧化物的气体传感器的重要基础。

著录项

  • 来源
  • 会议地点 Barcelona(ES)
  • 作者单位

    University of Freiburg, Department of Microsystems Engineering, Laboratory for Gas Sensors, Georges-Koehler-Allee 102, 79110 Freiburg, Germany;

    University of Freiburg, Department of Microsystems Engineering, Laboratory for Gas Sensors, Georges-Koehler-Allee 102, 79110 Freiburg, Germany;

    University of Freiburg, Department of Microsystems Engineering, Laboratory for Gas Sensors, Georges-Koehler-Allee 102, 79110 Freiburg, Germany;

    University of Freiburg, Department of Microsystems Engineering, Laboratory for Gas Sensors, Georges-Koehler-Allee 102, 79110 Freiburg, Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    metal oxides; MEMS; power consumption; gas sensing; adsorption;

    机译:金属氧化物MEMS;能量消耗;气体感应吸附;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号