首页> 外文会议>Small modular reactors symposium 2014 >SOIL STRUCTURE AND FLUID INTERACTION ASSESSMENT OF NEW MODULAR REACTOR: PART-2-NUMERICAL STUDY OF SOIL REACTOR STRUCTURE INTERACTION
【24h】

SOIL STRUCTURE AND FLUID INTERACTION ASSESSMENT OF NEW MODULAR REACTOR: PART-2-NUMERICAL STUDY OF SOIL REACTOR STRUCTURE INTERACTION

机译:新型模块化反应器的土壤结构与流体相互作用评估:第2部分:土壤反应器结构相互作用的数值研究

获取原文
获取原文并翻译 | 示例

摘要

To meet the growing demand of affordable power, several designs of Small Modular Reactors (SMRs), which will be installed below-grade, have been proposed by the nuclear industry. The containment vessels of these reactors will be under water. During a seismic event, these reactors will experience a complex soil (ground)-structure (SMR)-fluid (water) interaction that can affect the integrity of the system. Each of these reactors uses a seismic damping or isolation system to protect its important to safety structures, systems, and components from a design-basis earthquake. Designers of these damping/isolation systems need to have a thorough understanding of the complex soil-structure-fluid interactions to ensure the adequacy of the isolation system. In addition, regulators need to understand these interactions to evaluate the safety of such installations and systems. This study was initiated to understand the complexities in modeling facility responses that may accompany a design-basis earthquake. The ability to model these complexities is important to designers and regulators. It was recognized that a three-way coupled approach that can satisfactorily model the unique dynamic characteristics of soil surrounding the reactor, the reactor structure, and fluid contained within the reactor is not available. As a first step in understanding the complex interaction phenomena, a sequential coupling approach was adopted in this study. It was assumed that the feedback loop (such as structural deformation affecting ground motion and sloshing) has limited influence because of the high inertia of the massive structure. The general-purpose geological continuum package FLAC was used to simulate the propagation of earthquake-generated ground motion. The fluid analysis was conducted using the commercial computational fluid dynamics (CFD) package ANSYS-FLUENT. This paper briefly discusses the modeling techniques used in soil-structure and structure-fluid interaction analyses. Using a strong motion earthquake record, the ground acceleration at the base of the SMR was calculated and used as input to the CFD analysis of fluid motion inside the structure.
机译:为了满足日益增长的负担得起的电力需求,核工业已提出了几种将安装在地下的小型模块化反应堆(SMR)设计。这些反应堆的安全壳将在水下。在地震事件中,这些反应堆将经历复杂的土壤(地面)-结构(SMR)-流体(水)相互作用,从而影响系统的完整性。这些反应堆中的每一个都使用地震阻尼或隔震系统来保护其对安全结构,系统和组件的重要影响,使其免受设计基准地震的影响。这些阻尼/隔离系统的设计人员需要对复杂的土壤-结构-流体相互作用进行透彻的了解,以确保隔离系统的充分性。此外,监管机构需要了解这些相互作用,以评估此类设备和系统的安全性。开展这项研究是为了了解可能会伴随设计基准地震而对设施响应进行建模的复杂性。对这些复杂性进行建模的能力对设计者和监管者至关重要。公认的是,不能令人满意地模拟反应堆周围土壤,反应堆结构以及反应堆内所含流体的独特动态特性的三向耦合方法。作为理解复杂相互作用现象的第一步,本研究采用了顺序耦合方法。假定由于大型结构的高惯性,反馈回路(例如影响地面运动和晃荡的结构变形)的影响有限。通用地质连续体软件包FLAC用于模拟地震引起的地震动的传播。使用商业计算流体动力学(CFD)软件包ANSYS-FLUENT进行流体分析。本文简要讨论了用于土壤-结构和结构-流体相互作用分析的建模技术。使用强震记录,计算了SMR底部的地面加速度,并将其用作对结构内部流体运动进行CFD分析的输入。

著录项

  • 来源
    《Small modular reactors symposium 2014》|2014年|V001T02A003.1-V001T02A003.9|共9页
  • 会议地点 Washington DC(US)
  • 作者单位

    Center for Nuclear Waste Regulatory Analyses Southwest Research Institute San Antonio, Texas 78238, USA;

    Center for Nuclear Waste Regulatory Analyses Southwest Research Institute San Antonio, Texas 78238, USA;

    Center for Nuclear Waste Regulatory Analyses Southwest Research Institute San Antonio, Texas 78238, USA;

    Mechanical Engineering Division Southwest Research Institute San Antonio, Texas 78238, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号