首页> 外文会议>Small modular reactors symposium 2014 >SOIL STRUCTURE AND FLUID INTERACTION ASSESSMENT OF NEW MODULAR REACTOR: PART-1-NUMERICAL SIMULATION OF FLUID MOTION DUE TO SEISMIC WAVES
【24h】

SOIL STRUCTURE AND FLUID INTERACTION ASSESSMENT OF NEW MODULAR REACTOR: PART-1-NUMERICAL SIMULATION OF FLUID MOTION DUE TO SEISMIC WAVES

机译:新型模块化反应器的土壤结构及流体相互作用评估:第1部分:地震波引起的流体运动数值模拟

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the nuclear industry has proposed design of affordable small modular reactors (SMR), which will be installed below grade. A complex soil-structure-fluid interaction is expected to occur during a seismic event at such installation sites. A thorough understanding of this interaction is needed for the purpose of designing damping or isolation systems as well as to determine the adequacy and safety of these devices. A fully dynamically coupled analysis of the surrounding soil, reactor structure, and contained fluid within the reactor would provide the most accurate estimate of the forces acting on the SMR, but such an exercise is difficult to accomplish due to large discrepancies in length and time scales of each subsystem. It also would be computationally intensive to explicitly model all the detail physical features that affect system response in a single analysis framework. A sequential one-way explicit coupling between parts of the system, such as soil-structure or fluid-structure interaction in response to seismic ground motion, would provide some reasonable engineering information useful to designers and regulators. A two part study was conducted to understand the soil-structure and fluid-structure interaction in response to a seismic event for an SMR. The present paper describes the latter (fluid-structure interaction), where the containment fluid behavior during a seismic event is studied. A simplified two-dimensional computational fluid dynamics (CFD) model, representing a mockup structure based on the mPower reactor is developed in the study. It is used to simulate the sloshing motion of the fluid during a seismic event. A general volume of flow (VOF) approach is employed to simulate the sloshing motion and track the air-water interface. Ground acceleration calculated from a separate mechanical analysis is adopted in the study to specify the body forces experienced by the fluid. CFD simulations are performed for two different cases that correspond to two different input seismic waveforms. Simulated results highlight the movement of air-water interface due to sloshing within the containment building. The total horizontal and vertical forces on the structure, resulting from the sloshing motion were calculated. A Fourier analysis of the calculated fluid forces shows the dominant frequencies of the force, due to fluid sloshing, are different from that of the seismic acceleration. Similar dominant frequencies of the forces are predicted using two different input seismic waveforms. The magnitudes of the forces varied, depending on the magnitude of the seismic waveform input.
机译:近年来,核工业已提出了可负担得起的小型模块化反应堆(SMR)的设计,该反应堆将安装在等级以下。预计在此类安装地点的地震事件中会发生复杂的土壤-结构-流体相互作用。为了设计阻尼或隔离系统以及确定这些设备的充分性和安全性,需要对这种相互作用有透彻的了解。对周围土壤,反应堆结构和反应堆内的流体进行全动态耦合分析,可以对作用在SMR上的力进行最准确的估算,但是由于长度和时间尺度上的巨大差异,这种练习很难完成每个子系统。在单个分析框架中显式对影响系统响应的所有详细物理特征进行建模也将需要大量计算。系统各部分之间的顺序单向显式耦合,例如响应地震地震动的土壤-结构或流体-结构相互作用,将为设计人员和管理人员提供一些合理的工程信息。进行了一个分为两部分的研究,以了解SMR响应地震事件的土壤-结构和流体-结构相互作用。本文描述了后者(流固耦合),其中研究了地震事件中的安全壳流体行为。研究中开发了一个简化的二维计算流体动力学(CFD)模型,该模型表示基于mPower反应堆的模型结构。它用于模拟地震事件中流体的晃动。一般流量(VOF)方法用于模拟晃荡运动并跟踪空气-水界面。在研究中采用了通过单独的机械分析计算得出的地面加速度,以指定流体承受的体力。针对与两种不同输入地震波形相对应的两种不同情况执行CFD模拟。模拟结果强调了由于安全壳内晃动而引起的空气-水界面的运动。计算了由晃动引起的结构上的总水平力和垂直力。对计算出的流体力进行的傅立叶分析表明,由于流体晃动,该力的主要频率与地震加速度的频率不同。使用两个不同的输入地震波形可以预测相似的主力频率。力的大小根据地震波形输入的大小而变化。

著录项

  • 来源
    《Small modular reactors symposium 2014 》|2014年|V001T02A004.1-V001T02A004.10|共10页
  • 会议地点 Washington DC(US)
  • 作者单位

    Center for Nuclear Waste Regulatory Analyses Geosciences and Engineering Division Southwest Research Institute~® San Antonio, TX USA;

    Center for Nuclear Waste Regulatory Analyses Geosciences and Engineering Division Southwest Research Institute~® San Antonio, TX USA;

    Center for Nuclear Waste Regulatory Analyses Geosciences and Engineering Division Southwest Research Institute~® San Antonio, TX USA;

    Mechanical Engineering Division Southwest Research Institute~® San Antonio, TX USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号