首页> 外文会议>Single molecule spectroscopy and superresolution imaging X >Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging
【24h】

Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging

机译:定量评估科学CMOS(sCMOS)相机中用于计算成像的单个像素的准确性和方差

获取原文
获取原文并翻译 | 示例

摘要

The "scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity,photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between -20 to ~1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.
机译:“科学” CMOS(sCMOS)相机架构从根本上不同于CCD和EMCCD相机。在数字CCD和EMCCD照相机中,从电荷到数字输出的转换通常是通过单个电子链进行的,并且尽管量子效率可能会在空间上变化,但所有像素的读取噪声和从光电子到数字输出的转换因子都是高度均匀的。在CMOS相机中,每个像素的电荷到电压的转换是分开的,并且每一列都有独立的放大器和模数转换器,此外还有量子效率中像素到像素的变化。 CMOS图像传感器的“原始”输出包括读取噪声,电子增益,失调和暗电流的像素间差异。科学相机制造商对来自CMOS图像传感器的原始信号进行数字补偿,以提供可用的图像。除非正确建模,否则图像中的统计噪声会在诸如波动相关光谱法或计算成像(例如使用最大似然估计的定位显微镜)之类​​的方法中引入误差。我们使用高度均匀的标准,现成的滨松ORCA-Flash4.0 V3 sCMOS相机测量了单个像素偏移,暗电流,读取噪声,线性,光响应非均匀性和方差分布的分布和空间图和受控的照明条件,从黑暗条件到每帧-20至〜1,000个光子/像素之间的多个低光照水平到更高的光照条件。我们进一步表明,使用像素方差进行平场校正会导致具有良好工厂校准功能的相机出现错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号