首页> 外文会议>Single molecule spectroscopy and imaging II >Superresolution Imaging in Live Caulobacter Crescentus Cells Using Photoswitchable Enhanced Yellow Fluorescent Protein
【24h】

Superresolution Imaging in Live Caulobacter Crescentus Cells Using Photoswitchable Enhanced Yellow Fluorescent Protein

机译:使用可光开关增强的黄色荧光蛋白对生活的新月形Caulobacter Crescentus细胞进行超分辨率成像。

获取原文
获取原文并翻译 | 示例

摘要

Recently, photoactivation and photoswitching were used to control single-molecule fluorescent labels and produce images of cellular structures beyond the optical diffraction limit (e.g., PALM, FPALM, and STORM). While previous live-cell studies relied on sophisticated photoactivatable fluorescent proteins, we show in the present work that superresolution imaging can be performed with fusions to the commonly used fluorescent protein EYFP. Rather than being photoactivated, however, EYFP can be reactivated with violet light after apparent photobleaching. In each cycle after initial imaging, only a sparse subset fluorophores is reactivated and localized, and the final image is then generated from the measured single-molecule positions. Because these methods are based on the imaging nanometer-sized single-molecule emitters and on the use of an active control mechanism to produce sparse sub-ensembles, we suggest the phrase "Single-Molecule Active-Control Microscopy" (SMACM) as an inclusive term for this general imaging strategy. In this paper, we address limitations arising from physiologically imposed upper boundaries on the fluorophore concentration by employing dark time-lapse periods to allow single-molecule motions to fill in filamentous structures, increasing the effective labeling concentration while localizing each emitter at most once per resolution-limited spot. We image cell-cycle-dependent superstructures of the bacterial actin protein MreB in live Caulobacter crescentus cells with sub-40-nm resolution for the first time. Furthermore, we quantify the reactivation quantum yield of EYFP, and find this to be 1.6 × 10~(-6), on par with conventional photoswitchable fluorescent proteins like Dronpa. These studies show that EYFP is a useful emitter for in vivo superresolution imaging of intracellular structures in bacterial cells.
机译:最近,光活化和光转换被用于控制单分子荧光标记并产生超出光学衍射极限(例如,PALM,FPALM和STORM)的细胞结构的图像。尽管先前的活细胞研究依赖于复杂的可光激活的荧光蛋白,但我们在当前工作中表明可以通过与常用荧光蛋白EYFP融合来进行超分辨率成像。然而,EYFP除了被光活化外,还可以在表面光漂白后用紫光重新活化。在初始成像后的每个循环中,只有稀疏的子集荧光团会重新激活并定位,然后从测得的单分子位置生成最终图像。因为这些方法基于成像的纳米级单分子发射器,并且使用主动控制机制来产生稀疏子组件,所以我们建议将“单分子主动控制显微镜”(SMACM)包括在内此一般成像策略的术语。在本文中,我们通过利用黑暗的时间间隔周期允许单分子运动填充丝状结构,增加有效标记浓度同时每个分辨率最多定位每个发射器一次,解决了由于荧光团浓度在生理上施加的上限所引起的局限性现货。我们首次以低于40 nm的分辨率成像活的新月形梭状芽胞细菌细菌肌动蛋白MreB的细胞周期依赖性超微结构。此外,我们量化了EYFP的再活化量子产率,发现它是1.6×10〜(-6),与Dronpa等传统的光开关荧光蛋白相当。这些研究表明,EYFP是细菌细胞中细胞内结构的体内超分辨率成像的有用发射物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号