首页> 外文会议>Sensors for Extreme Harsh Environments >Characterization of Irradiated and Temperature-compensated Gallium Nitride Surface Acoustic Wave Resonators
【24h】

Characterization of Irradiated and Temperature-compensated Gallium Nitride Surface Acoustic Wave Resonators

机译:辐射和温度补偿的氮化镓表面声波谐振器的特性

获取原文
获取原文并翻译 | 示例

摘要

Conventional electronic components are prone to failure and drift when exposed to space environments, which contain harsh conditions, such as extreme variation in temperature and radiation exposure. As a result, electronic components are often shielded with heavy and complex packaging. New material platforms that leverage the radiation and temperature tolerance of wide bandgap materials can be used to develop robust electronic components without complex packaging. One such component that is vital for communication, navigation and signal processing on space exploration systems is the on-board timing reference, which is conventionally provided by a quartz crystal resonator and is prone to damage from radiation and temperature fluctuations. As a possible alternative, this paper presents the characterization of microfabricated and wide bandgap gallium nitride (GaN) surface acoustic wave (SAW) resonators in radiation environments. Ultimately, in combination with the two-dimensional gas (2DEG) layer at the AlGaN/GaN interface, high electron mobility transistor (HEMT) structures can provide a monolithic solution for timing electronics on board space systems. One-port SAW resonators are microfabricated on a GaN-on-sapphire substrate are used to explore the impact of irradiation on the device performance. The GaN-based SAW resonator was subjected to extreme temperature conditions to study the change in resonance frequency. Thermal characterization of the resonator has revealed a self-compensating property at cryogenic temperatures. In addition, GaN-on-sapphire samples were irradiated using a Cs-137 source up to 55 krads of total ionizing dose (TID). The measured frequency response and Raman spectroscopy of the GaN/sapphire SAW resonators microfabricated from the irradiated samples are presented.
机译:常规的电子组件在暴露于空间环境时容易出现故障和漂移,该空间环境包含恶劣条件,例如温度和辐射暴露的极端变化。结果,电子部件经常被笨重且复杂的包装屏蔽。利用宽带隙材料的辐射和温度耐受性的新材料平台可用于开发坚固的电子组件,而无需复杂的包装。对于太空探索系统上的通信,导航和信号处理至关重要的一个这样的组件是机载定时参考,它通常由石英晶体谐振器提供,并且容易受到辐射和温度波动的损害。作为一种可能的替代方法,本文介绍了辐射环境中微细加工的宽带隙氮化镓(GaN)表面声波(SAW)谐振器的特性。最终,高电子迁移率晶体管(HEMT)结构与AlGaN / GaN界面处的二维气体(2DEG)层相结合,可为单板空间系统中的电子定时提供单片解决方案。将单端口SAW谐振器微制造在蓝宝石上的GaN衬底上,以研究辐射对器件性能的影响。 GaN基SAW谐振器受到极端温度条件的影响,以研究谐振频率的变化。谐振器的热特性显示出在低温下的自补偿特性。此外,使用Cs-137光源辐照的蓝宝石GaN样品的总电离剂量(TID)高达55 krads。介绍了由辐照样品微制造的GaN /蓝宝石声表面波谐振器的频率响应和拉曼光谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号