首页> 外文会议>Sensor+Test 2008 Proceedings >Fundamental Measurement Uncertainty Limits of Doppler Global Velocimetry with Laser Frequency Modulation
【24h】

Fundamental Measurement Uncertainty Limits of Doppler Global Velocimetry with Laser Frequency Modulation

机译:激光调频多普勒测速仪的基本测量不确定度极限

获取原文
获取原文并翻译 | 示例

摘要

A Doppler Global Velocimetry system with sinusoidal laser frequency modulation (FM-DGV) for the purpose of measuring velocity fields in fluid flows is described. It consists of a frequency modulated laser diode emitting at 852.3 nm, a caesium absorption cell to convert Doppler freqency shifts to intensity changes and a fibre-coupled avalanche photo diode array as detecting unit. The fundamental limits of the measurement uncertainty are analysed to understand and overcome current system limitations. Therefore, a simplified signal and a noise model are derived. The considered noises are Poisson distributed photon noise and Gaussion distributed detector noise. Using these models, the theory of Cramer and Rao can be applied, calculating the minimum achievable measurement uncertainty. The calculations show, that 0.02 m/s minimum standard deviation of the velocity are achievable with e.g. 20 nW scattered light power and 260 fW/VHz minimum noise equivalent power of the detector. This agrees well with the measured value of 0.03 m/s. Furthermore, we found that the influence of detector noise is of big importance for flow measurements, that are low scattered light powers. As a result, one strategy for FM-DGV system improvements is the optimisation of the detectors. A comparison between the fundamental measurement uncertainty limit of FM-DGV and conventional DGV shows, that in principle approximately the same velocity resolutions can be achieved. However, two large system immanent errors (image misalignment error and beam splitting error) reducing the performance of conventional DGV using two detector units are eliminiated with FM-DGV technique. Thus, it is a promising tool for measuring the flow velocity e.g. around a truncated cylinder or the velocity spectrum for turbulence analysis with low measurement uncertainty and instantaneously at multiple points.
机译:描述了一种具有正弦波激光频率调制(FM-DGV)的多普勒全局测速系统,用于测量流体流动中的速度场。它由一个在852.3 nm处发射的调频激光二极管,一个将多普勒频率转换转换为强度变化的铯吸收池以及一个作为检测单元的光纤耦合雪崩光电二极管阵列组成。分析测量不确定度的基本限制,以了解和克服当前系统的限制。因此,导出了简化的信号和噪声模型。所考虑的噪声是泊松分布的光子噪声和高斯分布的检测器噪声。使用这些模型,可以应用Cramer和Rao的理论,计算可实现的最小测量不确定度。计算结果表明,例如,速度的最小标准偏差为0.02 m / s。探测器的20 nW散射光功率和260 fW / VHz最小噪声等效功率。这与0.03 m / s的测量值非常吻合。此外,我们发现检测器噪声的影响对于流量测量非常重要,因为它们是低散射光功率。结果,FM-DGV系统改进的一种策略是优化检测器。 FM-DGV的基本测量不确定度极限与常规DGV的比较表明,原则上可以实现相同的速度分辨率。然而,FM-DGV技术消除了两个大型系统固有误差(图像失准误差和分束误差),从而降低了使用两个检测器单元的常规DGV的性能。因此,它是一种用于测量流速例如流速的有前途的工具。围绕截短的圆柱体或速度谱进行湍流分析,测量不确定度低,并且可以在多个点即时进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号