首页> 外文会议>Second world conference on sampling and blending >Sampling, Metallurgical Accounting and Reduction of BalanceEstimation Variance
【24h】

Sampling, Metallurgical Accounting and Reduction of BalanceEstimation Variance

机译:抽样,冶金核算和余额减少估算差额

获取原文
获取原文并翻译 | 示例

摘要

A metallurgical balance drawn around a mineral processing plant orrnsmelter must involve all process streams crossing the plant boundary.rnModern sampling theory, as formulated by Gy, and sound statisticalrnmethod can be used to determine the uncertainties in the observed assaysrnfor the set of balance analytes and in the mass flow rates of the processrnstreams for the balance period. These uncertainties can then be usedrntogether with the material balance equations to arrive at adjustedrncomponent mass flows that satisfy the material balances exactly. Torndetermine whether or not the data is consistent with the level ofrnuncertainty in the data and with the material balance equations, arngoodness of fit test is applied. This goodness of fit criterion is thernprincipal tool to quantify the quality of the material balances.rnThe mathematical structure of the statistical material balance problemrnposes a number of challenges. For example, while the variances of thernadjusted component mass flows do not vanish, the variances of the sumsrnof the adjusted component mass flows about each balance node dornvanish, simply because the balancing computation demands that thernbalances close exactly. Even though it can be shown that the variances ofrnthe adjusted component mass flows are always lower than the estimatesrnfor the corresponding unadjusted component flows, it is still not possiblernto construct a confidence interval on the component mass flow into (andrnout of) a balance node using the adjusted component flows. On the facernof it, such a confidence interval is exactly what is most desired from thernbalance calculations. The problem arises because the balance problem isrna data adjustment rather than a parameter estimation problem.rnIt is possible, however, to calculate the recovery of a component to arnproduct stream and determine a confidence interval for the recoveryrnvalue. It is also possible to calculate an uncertainty in the mass flow ofrnany balance species in any process stream, before and after balancing.rnBalance results have little meaning without the confidence intervalrnestimates. Having invested in the manpower and procedures that make arnstatistically valid balance on an operation possible, the management mayrnfind that the levels of uncertainty associated with the balances are ratherrnhigher than they would like. The obvious solution to the wide confidencernintervals is to reduce the uncertainty in the assays and mass flow rates onrnthe principal process streams. The cost of this uncertainty reduction mayrnbe quite significant, as it will involve reduction in analytical variances orrnreduction in sampling and preparation variances which may requirerninvestment in and development of new sampling hardware or routinernduplication of assays to reduce the assaying variance.rnA second strategy for uncertainty reduction can be proposed whichrninvolves the use of additional sampling points to provide material balancernnodes internal to the processing operation. The information required tornmake these internal balances may well exist within the operation, but itrnmay not be recognised as being of value or the standard of sampling andrnassaying may not be deemed to be sufficient to use the data forrnmetallurgical accounting purposes. The marginal cost of elevating thernexisting sampling systems to metallurgical accounting standards mayrnwell be smaller than that to improve the sampling and assaying on thernboundary streams.rnThis paper presents a statistical analysis of an uncomplicated form ofrnthe balance calculations that permits exploration of accuracy issues andrnthe advantages that come from additional internal balancing nodes for thernprocess flow sheet. The calculations are based on a relatively simple flowrnsheet of common structure, but are of general applicability. The objectivernis to reveal broad issues. While each process flow sheet and sampling andrnanalysis system requires individual analysis to reveal precisely where therngains can be made most economically, a general result can berndemonstrated which provides an estimate of the limit to the variancernreduction which can be achieved by adding internal balance nodes.
机译:选矿厂或冶炼厂周围的冶金天平必须涉及跨越工厂边界的所有工艺流程.rn由Gy提出的现代采样理论和合理的统计方法可用于确定所观察到的分析中天平分析物组和分析方法的不确定性。平衡期间过程流的质量流率。然后可以将这些不确定性与物料平衡方程一起使用,以得出精确满足物料平衡的调整后的组分质量流量。托恩德确定数据是否与数据中的不确定性水平以及物料平衡方程式一致,应用拟合优度检验。这种拟合优度标准是量化物料平衡质量的主要工具。统计物料平衡问题的数学结构提出了许多挑战。例如,虽然调整后的组件质量流量的方差不消失,但调整后的组件质量围绕每个平衡节点的流量之和的方差却消失了,这仅仅是因为平衡计算需要精确地关闭平衡。即使可以证明调整后的组件质量流量的方差始终低于相应未调整后的组件流量的估计值,但仍然不可能使用等式来构建进入(或退出)平衡节点的组件质量流量的置信区间。调整后的成分流量。从表面上看,这样的置信区间恰好是平衡计算中最需要的区间。出现此问题的原因是,平衡问题是数据调整,而不是参数估计问题。但是,有可能计算出向废品流输送组分的回收率,并确定回收率的置信区间。在平衡之前和之后,还可以计算任何工艺流中任何平衡物质的质量流量的不确定性。如果没有置信区间估计,平衡结果几乎没有意义。在投入了人力和程序以使一项操作能够实现统计上有效的平衡之后,管理层可能会发现与余额相关的不确定性水平要比他们想要的高得多。宽置信区间的明显解决方案是减少主要工艺物流的测定不确定性和质量流速。减少不确定性的成本可能相当可观,因为这将涉及减少分析方差或减少采样和制备方差,这可能需要投资和开发新的采样硬件或常规重复测定以减少测定方差。可以提出涉及使用附加采样点以提供处理操作内部的材料平衡节点的建议。形成这些内部余额所需的信息很可能在工序中存在,但可能不被认为具有价值,或者采样和分析的标准可能不足以将数据用于冶金会计目的。将现有的采样系统提升到冶金会计标准的边际成本可能小于改善对边界流的采样和化验所需要的边际成本。本文介绍了一种简单形式的余额计算的统计分析,该余额计算可以探索准确性问题并带来好处。来自流程流程表的其他内部平衡节点。计算是基于相对简单的通用结构流程图,但具有普遍适用性。揭示广泛问题的目的。虽然每个过程流程图和采样与分析系统都需要进行单独分析以准确揭示哪里可以最经济地获得收益,但可以证明总体结果,该结果可以估算出方差减少的极限,这可以通过添加内部平衡节点来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号