【24h】

GEOELECTRIC AND ELECTROMAGNETIC MEASUREMENTS ON A DOMESTIC WASTE SITE

机译:国内废物现场的地电和电磁测量

获取原文
获取原文并翻译 | 示例

摘要

The synthetic radargram in figure 6 shows that minor fissures in the clay liner cannot be detected with GPR even if the soil was homogeneous as assumed in this model. Comparing figure 6 with figure 5 one can conclude that a dislocation of Δz= 0.30 m or more should be visible in the field data. Since there is no such sign of disruption or slip in the measured profiles the leakage cannot result from a dislocation of that size. Most of the points with a locally weaker or disrupt signal in figure 5 show an overlying diffraction hyperbola. Therefore these points cannot necessarily be interpreted as a rupture or greater fissure in the gravel or clay layer. The disturbing effects of such diffractions may result in signal weakening as well. Nevertheless some interesting spots of the GPR measurements require further investigations. Those are points with a loss of signal power without an overlying diffraction hyperbola or similar disturbing effects. The main problem of the geoelectric data is the non-uniqueness of the models: There always exist several models with a similar rms error for one profile. There is no obvious hint of a probable dislocation or other leakage from the geoelectric techniques used. The described methods did not show any definite reason for the leakage nor an exact location in the mineral clay liner of the lysimeter for the source of the leakage. Yet some spots can be specified that may hint to a possible leakage and that should be examined more closely to gather further informations. Taking into account the synthetic radar data it can be assumed that the leakage is owed to microfissures probably occuring during a very dry period. Such fissures could not be detected either with GPR or with geoelectric measurements used in this case. In addition, both methods (geoelectrics and GPR) point to a lower soil water content at the edges of the lysimeter.
机译:图6中的合成雷达图显示,即使该模型假设的土壤均质,GPR也无法检测到粘土衬层中的细小裂缝。将图6与图5进行比较,可以得出结论:在现场数据中应看到Δz= 0.30 m或更大的位错。由于在测量的轮廓中没有这种破坏或打滑的迹象,因此泄漏不能由该尺寸的错位引起。在图5中,大多数具有局部弱信号或干扰信号的点都显示出上方的衍射双曲线。因此,这些点不一定必须解释为砾石或粘土层中的破裂或较大裂缝。这种衍射的干扰效应也可能导致信号减弱。然而,GPR测量中的一些有趣之处需要进一步研究。这些点是信号功率损失的点,没有叠加的衍射双曲线或类似的干扰效应。地电数据的主要问题是模型的不唯一性:始终存在多个模型,其中一个剖面的均方根误差相似。没有明显的迹象表明所使用的地电技术可能会错位或发生其他泄漏。所描述的方法没有显示出任何确定的泄漏原因,也没有显示出渗漏仪在矿物黏土衬里中泄漏源的确切位置。但是可以指定一些斑点,这些斑点可能暗示可能的泄漏,应该更仔细地检查以收集更多信息。考虑到合成雷达数据,可以假定泄漏是由于可能在非常干燥的时期内发生的微裂缝引起的。使用GPR或在这种情况下使用的地电测量都无法检测到此类裂缝。此外,两种方法(地电法和GPR法)都指向溶渗仪边缘的较低土壤水分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号