首页> 外文会议>Second European Workshop on Exo-Astrobiology Sep 16-19, 2002 Graz, Austria >THE MARTIAN ATMOSPHERIC OXYGEN SURFACE SINK: A SOURCE FOR SUPER-RADICALS
【24h】

THE MARTIAN ATMOSPHERIC OXYGEN SURFACE SINK: A SOURCE FOR SUPER-RADICALS

机译:Martian大气氧表面沉:超自由基的来源

获取原文
获取原文并翻译 | 示例

摘要

Thermal loss processes of hydrogen and non-thermal atmospheric loss processes of hydrogen and oxygen and chemical weathering of oxygen with the surface soil influence the evolution of the Martian atmosphere with regard to its water inventory. These oxygen atoms that react with the surface soil are responsible for the toxicology of the Martian surface. Since the evolution of thermal and non-thermal escape processes, such as exospheric loss of oxygen via dissociative recombination, atmospheric sputtering and ion pick up depend on the history of the intensity of the solar EUV radiation and the solar wind density we use actual data from the Sun in time program for reconstructing the Sun's history of the spectral evolution from X-ray to EUV from the observation of solar proxies with different ages from the present up to 3.5 Gyr ago. Observations of flare activities of young solar-like stars inside these program strongly suggest that flare events are frequent and more powerful than observed at the present Sun. The high X-ray activity and the fast rotation of young solar-like stars indicate a much higher solar wind for the young Sun. We used a power law for the estimation of the average solar wind density of solar-like stars whose stellar winds were recently indirectly detected by using the amount of absorption in the HI areas as a diagnostic for their stellar mass loss rates. The correlation between mass loss and X-ray surface flux indicates a solar wind more than 1000 times massive in the distant past. We used a gas dynamic test particle model that involves the motion in the interplanetary electric and magnetic field for the estimation of the pick up ion loss rates which seem to be the most efficient non-thermal atmospheric loss process of the Martian atmosphere. By using new loss models and the data described above we estimate a loss of hydrogen and oxygen from Mars since 3.5 Gyr. We found that all non-thermal escape processes of oxygen from the present Martian atmosphere can not maintain the sum of thermal and non-thermal atmospheric loss rates of H in the ratio 2:1. Escape to space could therefore not be the only sink for oxygen on Mars since the desirable ratio of 2:1 of H:O loss rates should be established. Our study suggest that the missing oxygen needed for the validation of the 2:1 ratio between H and O is incorporated into the Martian surface by chemical weathering processes. The chemical environment, responsible for the oxidation of the Martian surface Mayers, is essentially also responsible for the toxicology of the Martian soil since the reactivity is related to ionized radicals. Our results have important implications for the search of organics on Mars and exobiology in general, as well as for electromagnetic subsurface sounding techniques.
机译:氢气的热损失过程和氢气和氧气的非热大气损失过程以及氧气与表层土壤的化学风化会影响火星大气在水存量方面的演变。这些与地表土壤反应的氧原子是火星表面毒理的原因。由于热和非热逸出过程的演变,例如通过解离重组导致的大气外氧气损失,大气溅射和离子吸收取决于太阳EUV辐射强度和太阳风密度的历史记录,因此我们使用了实际数据太阳时间计划,用于通过观察从现在到3.5 Gyr之前不同年龄的太阳代理来重建太阳从X射线到EUV的光谱演化历史。在这些程序中观测到的类似太阳的年轻恒星的耀斑活动强烈表明,耀斑事件比当前太阳观测到的事件更频繁,更强大。高X射线活动和年轻的类太阳恒星的快速旋转表明,年轻的太阳具有更高的太阳风。我们使用幂律来估计类似恒星的平均太阳风密度,这些恒星最近是通过使用HI区域的吸收量间接诊断出恒星风的,以诊断其恒星质量损失率。质量损失与X射线表面通量之间的相关性表明,在遥远的过去,太阳风的质量超过1000倍。我们使用了涉及行星际电场和磁场中运动的气体动力学测试粒子模型来估计吸收离子的损失速率,这似乎是火星大气最有效的非热大气损失过程。通过使用新的损耗模型和上述数据,我们估算了自3.5 Gyr以来火星的氢和氧损失。我们发现,当前火星大气中氧气的所有非热逸出过程都不能保持H的热与非热大气损耗率之和为2:1。因此,逃逸到太空可能不是火星上唯一的氧气汇,因为应该建立H:O损失率2:1的理想比率。我们的研究表明,通过化学风化过程将验证H和O之比为2:1所需的缺少的氧气纳入火星表面。负责火星表面Mayers氧化的化学环境本质上也负责火星土壤的毒理学,因为反应性与离子化自由基有关。我们的研究结果对火星上的有机物的搜寻和一般的外生生物学以及电磁地下探测技术具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号