首页> 外文会议>Riso International Symposium on Materials Science; 20060904-07; >AN EFFECT OF MICROSTRUCTURE DEFECTS ON SHEAR FATIGUE RESISTANCE OF GLASS REINFORCED POLYMERS
【24h】

AN EFFECT OF MICROSTRUCTURE DEFECTS ON SHEAR FATIGUE RESISTANCE OF GLASS REINFORCED POLYMERS

机译:微观结构缺陷对玻璃纤维增​​强聚合物的抗剪切疲劳性能的影响

获取原文
获取原文并翻译 | 示例

摘要

Long fibre glass reinforced polymers (GRP) are materials with a great potential for the use in wide range of machinery components and structures due to some specific favourable properties. An example of an advanced application of GRP is for a manufacture of environmentally friendly leaf springs, because of very suitable values of E-modulus, low specific weight, damping, sufficient static strength and generally excellent fatigue properties. In comparison with metal alloys, new design approaches have to be used, taking account of different fatigue damage mechanisms and modes. In the paper, fatigue properties of GRP materials and components are discussed with a particular emphasis on scale and microstructure effects. Results of an experimental investigation of fatigue damage mechanisms under bending and shear cyclic loading and effects of microstructural defects resulting from an insufficient wetting are presented and analysed. It was shown that if microstructural defects are present in the component, initiation of fatigue damage is localised into these areas, resulting in sudden, premature failure. Fatigue life can be then reduced by more than three orders in comparison with the perfect material. The presence of defects is affected particularly by properties of the constituents and moulding parameters. Suitable changes of the process parameters resulted in a significant improvement of fatigue resistance.
机译:长纤维玻璃纤维增​​强聚合物(GRP)由于具有某些特殊的良好性能,因此具有广泛的用途,可广泛用于各种机械部件和结构。 GRP的高级应用实例是制造环保型钢板弹簧,这是因为E模量非常合适,比重低,阻尼小,足够的静态强度以及通常优异的疲劳性能。与金属合金相比,必须使用新的设计方法,要考虑到不同的疲劳损伤机理和模式。在本文中,讨论了玻璃钢材料和组件的疲劳性能,并特别强调了尺度和微观结构的影响。提出并分析了弯曲和剪切循环载荷下疲劳损伤机理的实验研究结果,以及由于润湿不足而引起的微结构缺陷的影响。结果表明,如果部件中存在微结构缺陷,则疲劳损伤的起因会局限在这些区域,从而导致突然的过早失效。与理想材料相比,疲劳寿命可减少三倍以上。缺陷的存在尤其受到成分的性质和成型参数的影响。工艺参数的适当更改可显着提高抗疲劳性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号