首页> 外文会议>Research in computational molecular biology >Time and Space Efficient RNA-RNA Interaction Prediction via Sparse Folding
【24h】

Time and Space Efficient RNA-RNA Interaction Prediction via Sparse Folding

机译:通过稀疏折叠进行时空高效的RNA-RNA相互作用预测

获取原文
获取原文并翻译 | 示例

摘要

In the past years, a large set of new regulatory ncRNAs have been identified, but the number of experimentally verified targets is considerably low. Thus, computational target prediction methods are on high demand. Whereas all previous approaches for predicting a general joint structure have a complexity of O(n6) running time and O(n4) space, a more time and space efficient interaction prediction that is able to handle complex joint structures is necessary for genome-wide target prediction problems. In this paper we show how to reduce both the time and space complexity of the RNA-RNA interaction prediction problem as described by Alkan et al. [1] via dynamic programming sparsification -which allows to discard large portions of DP tables without loosing op-timality. Applying sparsification techniques reduces the complexity of the original algorithm from O(n6) time and O(n4) space to O(n*ip(n)) time and O(n2i))(n) + n3) space for some function ip(n), which turns out to have small values for the range of n that we encounter in practice. Under the assumption that the polymer-zeta property holds for RNA-structures, we demonstrate that ip(n) = O(n) on average, resulting in a linear time and space complexity improvement over the original algorithm. We evaluate our sparsified algorithm for RNA-RNA interaction prediction by total free energy minimization, based on the energy model of Chitsaz et al. [2], on a set of known interactions. Our results confirm the significant reduction of time and space requirements in practice.
机译:在过去的几年中,已经发现了大量新的调控性ncRNA,但是经过实验验证的靶标数量却很少。因此,对计算目标预测方法的需求很高。尽管所有先前的用于预测一般关节结构的方法都具有O(n6)运行时间和O(n4)空间的复杂性,但对于全基因组靶标而言,需要能够处理复杂关节结构的更多时空有效交互预测方法预测问题。在本文中,我们展示了如何减少Alkan等人描述的RNA-RNA相互作用预测问题的时间和空间复杂性。 [1]通过动态编程稀疏化-可以丢弃DP表的大部分而不会失去乐观性。应用稀疏化技术将原始算法的复杂度从O(n6)时间和O(n4)空间减少到O(n * ip(n))时间和O(n2i))(n)+ n3)空间(n),事实证明我们在实践中遇到的n范围较小。在假定聚合物-zeta属性对RNA结构有效的假设下,我们证明了ip(n)= O(n)平均而言,与原始算法相比,线性时间和空间复杂度得到了改善。我们基于Chitsaz等人的能量模型,通过总自由能最小化来评估用于稀疏算法的RNA相互作用预测。 [2],关于一组已知的相互作用。我们的结果证实了实践中时间和空间需求的显着减少。

著录项

  • 来源
  • 会议地点 Lisbon(PT);Lisbon(PT);Lisbon(PT)
  • 作者单位

    Lab for Computational Biology, School of Computing Science, Simon Eraser University, Burnaby, BC, Canada;

    Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universitat, Freiburg, Germany;

    Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universitat, Freiburg, Germany;

    Lab for Computational Biology, School of Computing Science, Simon Eraser University, Burnaby, BC, Canada;

    Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universitat, Freiburg, Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物工程学(生物技术);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号