首页> 外文会议>Remote sensing of the ocean, sea ice, and large water regions 2009 >Radiometric Cross-Calibration of Spaceborne Scatterometers - First Results
【24h】

Radiometric Cross-Calibration of Spaceborne Scatterometers - First Results

机译:星载散射仪的辐射度交叉校准-初步结果

获取原文
获取原文并翻译 | 示例

摘要

The main application of a scatterometer is the determination of the wind speed and direction at the sea surface. This is achieved by measuring the radar backscattering coefficient in three different directions and inverting these measurements using a geophysical model function (GMF). The scientific value of the data is directly related to the quality of the radiometric calibration.rnThere are currently two european C-band scatterometers operating, one on-board the ERS-2 spacecraft launched in 1995 and the other on-board METOP-A, launched in 2006. The similarity of the two scatterometers is an opportunity to ensure the continuity of more than 15 years of global scatterometer measurements. To achieve the consistency of the backscattering coefficients data sets, required for long-term climate studies, an accurate cross-calibration is vital. The cross-calibration is made possible since the two spacecrafts operate simultaneously from 2006 up to now.rnAs the backscattering coefficients measured by the scatterometers depend on acquisition time, location on the ground and on the geometry of the measurements (incidence and look angle), a direct comparison of measurements made by both instruments is practically impossible.rnIn particular cases, models can be used to cope with measurement differences. On the rain forest, assumed to be time-invariant, homogeneous and isotropic, the backscattering coefficient depends only on the incidence angle, and the constant gamma model can be used to cope with the incidence angle effects. On some ice covered areas (e.g. Greenland and Antarctica), assuming that the ice surface is isotropic, the ice line model can be used. It is a function of incidence angle and ice age and depends on the location. On the ocean, which is inherently not stable in time, the CM0D5 GMF is used. CMOD5 relates the observed backscatter to the geophysical parameters which are the wind speed and wind direction. Using the last model, measurement biases can be assessed making simultaneous observations unnecessary.rnIn this article, we present a cross-calibration methodology and present first results.
机译:散射仪的主要应用是确定海面的风速和风向。这是通过在三个不同方向上测量雷达后向散射系数并使用地球物理模型函数(GMF)反转这些测量结果来实现的。数据的科学价值与辐射校准的质量直接相关。rn目前有两种欧洲的C波段散射仪正在运行,一种是1995年发射的ERS-2航天器,另一种是METOP-A,这两个散射计的相似性是在2006年推出的,这是确保全球散射计测量超过15年连续性的机会。为了获得长期气候研究所需的背向散射系数数据集的一致性,准确的交叉校准至关重要。由于这两个航天器从2006年至今一直同时运行,因此可以进行交叉校准。rn由于散射仪测量的反向散射系数取决于采集时间,在地面上的位置以及测量的几何形状(入射角和视角),几乎不可能直接比较这两种仪器的测量结果。在特定情况下,可以使用模型来应对测量差异。在假定为时不变,均质且各向同性的雨林中,后向散射系数仅取决于入射角,并且恒定伽玛模型可用于应对入射角效应。在某些冰覆盖地区(例如格陵兰和南极洲),假设冰面是各向同性的,则可以使用冰线模型。它是入射角和冰龄的函数,并取决于位置。在时间上固有不稳定的海洋中,使用了CM0D5 GMF。 CMOD5将观测到的反向散射与风速和风向等地球物理参数相关联。使用最后一个模型,可以评估测量偏差,而无需同时进行观察。在本文中,我们介绍了一种交叉校准方法,并给出了初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号