首页> 外文会议>Remote Sensing of the Ocean, Sea Ice, and Large Water Regions >Radiometric Cross-Calibration of Spaceborne Scatterometers - First Results
【24h】

Radiometric Cross-Calibration of Spaceborne Scatterometers - First Results

机译:太空散散距离的辐射校准 - 首先结果

获取原文

摘要

The main application of a scatterometer is the determination of the wind speed and direction at the sea surface. This is achieved by measuring the radar backscattering coefficient in three different directions and inverting these measurements using a geophysical model function (GMF). The scientific value of the data is directly related to the quality of the radiometric calibration. There are currently two european C-band scatterometers operating, one on-board the ERS-2 spacecraft launched in 1995 and the other on-board METOP-A, launched in 2006. The similarity of the two scatterometers is an opportunity to ensure the continuity of more than 15 years of global scatterometer measurements. To achieve the consistency of the backscattering coefficients data sets, required for long-term climate studies, an accurate cross-calibration is vital. The cross-calibration is made possible since the two spacecrafts operate simultaneously from 2006 up to now. As the backscattering coefficients measured by the scatterometers depend on acquisition time, location on the ground and on the geometry of the measurements (incidence and look angle), a direct comparison of measurements made by both instruments is practically impossible. In particular cases, models can be used to cope with measurement differences. On the rain forest, assumed to he timeinvariant, homogeneous and isotropic, the backscattering coefficient depends only on the incidence angle, and the constant gamma model can be used to cope with the incidence angle effects. On some ice covered areas (e.g. Greenland and Antarctica), assuming that the ice surface is isotropic, the ice line model can be used. It is a function of incidence angle and ice age and depends on the location. On the ocean, which is inherently not stable in time, the CMOD5 GMF is used. CMOD5 relates the observed backscatter to the geophysical parameters which are the wind speed and wind direction. Using the last model, measurement biases can be assessed making simultaneous observations unnecessary. In this article, we present a cross-calibration methodology and present first results.
机译:散射计的主要应用是在海面的风速和方向的确定。这是通过使用地球物理模型功能(GMF)在三个不同方向上测量雷达反向散射系数并反转这些测量来实现的。数据的科学价值与辐射校准的质量直接相关。目前有两种欧洲C波段散射仪运行,一个车载-2斯-2航天器于1995年发起,另一个在2006年推出的车载Metop-A。两种散射仪的相似性是确保连续性的机会超过15年的全局散射计测量。为了达到长期气候研究所需的反向散射系数数据集的一致性,准确的交叉校准是至关重要的。自2006年从2006年同时运行,自2006年,自2006年开始,可以实现交叉校准。由于散射仪测量的反向散射系数取决于采集时间,地面上的位置和测量的几何形状(入射和视角),两种仪器制造的测量的直接比较实际上是不可能的。在特定情况下,模型可用于应对测量差异。在雨林上,假设他是时源性,均匀和各向同性的,后散射系数仅取决于入射角,并且恒定的γ模型可用于应对入射角效应。在一些冰覆盖区域(例如格陵兰和南极洲),假设冰表面是各向同性的,可以使用冰线模型。它是发病角和冰河时代的函数,取决于位置。在海洋上固有并不稳定,使用CMOD5 GMF。 CMOD5将观察到的反向散射与流动速度和风向的地球物理参数涉及。使用最后模型,可以评估测量偏差,使得同时观察不必要。在本文中,我们提出了一个跨校准方法,并提供了第一个结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号