首页> 外文会议>Recent researches in mechanical engineering >Use of Computational Fluid Dynamics and Fluid-Structure Interaction to Simulate the Cardiovascular System
【24h】

Use of Computational Fluid Dynamics and Fluid-Structure Interaction to Simulate the Cardiovascular System

机译:利用计算流体动力学和流体-结构相互作用模拟心血管系统

获取原文
获取原文并翻译 | 示例

摘要

The aim of this session is to discuss how computational methods can be used to investigate the fluid dynamics of the cardiovascular system. The session will focus on the heart and its natural valves. This is important as heart valve failure leads to fluid dynamics which are detrimental to the cardiovascular system that require surgery for correction. In the United Kingdom, the British Heart Foundation has estimated that cardiovascular disease is the cause of one out of every three deaths. Computational methods provide a non-invasive method to investigate the cardiovascular system. In particular computational fluid dynamics and fluid-structure interactions are useful as they can be used to predict fluid dynamics. The former enables shear stresses to be predicted, while the latter enables the induced stress and deformation to be predicted. Such predictions are useful when either understanding pathology or investigating surgical repair or replacement. However, use of computational fluid dynamics on its own ignores moving structures (e.g. heart valves) which can lead to inaccurate predictions of stress and flow. Fluid-structure interaction simulations can solve some of these limitations, for example, through the use of an Arbitrary-Lagrange Euler moving mesh. Its use, though, introduces further technical challenges such as contact modelling or including relatively large deformations in models (e.g. 10-20% strain). Further challenges include selection of representative geometry, boundary conditions, material properties for blood (e.g. viscosity) and soft tissues (e.g. heart valve Young's modulus). In the case of geometry or boundary conditions a major problem is accurate measurement. Defining suitable material properties presents the problem of large variability associated with natural tissues (e.g. heart valves). Currently in our laboratory we have been using both computational fluid dynamics and fluid-structure interaction to aid understanding of the cardiovascular system focusing on heart valves but also aid diagnosis and investigate failure of heart valves. The session includes: 1. background to the cardiovascular system, in particular the heart and its natural valves; 2. description of the basic physiology involved in the heart and heart valve fluid dynamics; 3. discussion of the benefits and limitations in using computational fluid dynamics and fluid-structure interaction to investigate the cardiovascular system; 4. discussion of the technical challenges that simulating the cardiovascular system presents; 5. current findings from our studies on computational methods in investigating the cardiovascular system and its fluid dynamics.
机译:本届会议的目的是讨论如何使用计算方法来研究心血管系统的流体动力学。会议将重点讨论心脏及其天然瓣膜。这很重要,因为心脏瓣膜衰竭会导致流体动力学,这不利于需要手术进行矫正的心血管系统。在英国,英国心脏基金会(British Heart Foundation)估计,心血管疾病是三分之二的死亡原因。计算方法提供了一种无创方法来研究心血管系统。特别地,计算流体动力学和流体-结构相互作用是有用的,因为它们可用于预测流体动力学。前者可以预测剪切应力,而后者可以预测诱导应力和变形。当了解病理或研究手术修复或置换时,此类预测很有用。但是,单独使用计算流体动力学会忽略移动结构(例如心脏瓣膜),这会导致应力和流量的预测不准确。流体-结构相互作用模拟可以解决其中一些局限性,例如,通过使用任意Lagrange Euler移动网格。但是,其使用带来了进一步的技术挑战,例如接触建模或在模型中包含相对较大的变形(例如10-20%的应变)。进一步的挑战包括选择代表性的几何形状,边界条件,血液的材料属性(例如粘度)和软组织(例如心脏瓣膜杨氏模量)。在几何形状或边界条件的情况下,主要问题是精确的测量。定义合适的材料特性提出了与天然组织(例如心脏瓣膜)相关的大变化性的问题。当前,在我们的实验室中,我们一直在使用计算流体动力学和流体-结构相互作用来帮助理解侧重于心脏瓣膜的心血管系统,还有助于诊断和调查心脏瓣膜的故障。会议内容包括:1.心血管系统的背景知识,尤其是心脏及其自然瓣膜; 2.描述涉及心脏和心脏瓣膜动力学的基本生理学; 3.讨论使用计算流体动力学和流固耦合研究心血管系统的好处和局限性; 4.讨论模拟心血管系统存在的技术挑战; 5.我们研究心血管系统及其流体动力学的计算方法研究的最新发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号