首页> 外文OA文献 >Validation of Computational Fluid-Structure Interaction Analysis Methods to Determine Hydrodynamic Coefficients of a BOP Stack
【2h】

Validation of Computational Fluid-Structure Interaction Analysis Methods to Determine Hydrodynamic Coefficients of a BOP Stack

机译:验证计算流体 - 结构相互作用分析方法确定BOp堆的水动力系数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drilling riser systems are subjected to hydrodynamic loads from vessel motions, waves, steady currents and vortex-induced motions. This necessitates a proper structural analysis during the design phase using techniques such as finite element analysis (FEA). Common approaches within the FEA packages approximate the individual components including BOP/LMRP (Blow-Out Preventer/Lower Marine Riser Package), subsea tree and wellhead using 2D or 3D beam/pipe elements with approximated effective mass and damping coefficients. Predicted system response can be very sensitive to the mass, hydrodynamic added mass and drag of the large LMRP/BOP/Tree components above the wellhead. In the past, gross conservative estimates on the hydrodynamic coefficients were made and despite this, design criteria were generally met. With the advent of large sixth-generation BOP stacks with the possibility of additional capping stacks, such approximations are no longer acceptable. Therefore, the possibility of relying on the more detailed capability of computational fluid-structure interaction (FSI) analysis for a better calculation of these coefficients is investigated. In this paper, we describe a detailed model developed for a 38:1 scaled down BOP and discuss the subsequent predictions of the hydrodynamic coefficients. The model output is compared against the data from the concurrent tests conducted in an experimental tow tank. The comparison demonstrates that computational FSI can be an effective and accurate tool for calculating the hydrodynamic coefficients of complex structures like BOPs.
机译:钻井立管系统承受着船只运动,波浪,稳定电流和涡流引起的运动产生的流体动力载荷。这需要在设计阶段使用诸如有限元分析(FEA)之类的技术进行适当的结构分析。 FEA软件包中的常用方法使用2D或3D梁/管元件(具有近似的有效质量和阻尼系数)来近似各个组件,包括BOP / LMRP(防喷器/降低船用立管组件),海底树木和井口。预测的系统响应可能对井口上方的大型LMRP / BOP / Tree组件的质量,流体动力附加质量和阻力非常敏感。过去,人们对水动力系数进行了保守估计,尽管如此,总体上还是达到了设计标准。随着大型第六代BOP堆栈的出现以及附加封盖堆栈的可能性,这种近似值不再被接受。因此,研究了依靠更详细的计算流体-结构相互作用(FSI)分析能力来更好地计算这些系数的可能性。在本文中,我们描述了为38:1缩小的BOP开发的详细模型,并讨论了流体动力系数的后续预测。将模型输出与在实验拖车中进行的并行测试的数据进行比较。比较表明,计算FSI可以是计算复杂结构(如BOP)的水动力系数的有效且准确的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号